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Cover page layout by Lucie Homolová
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PREFACE

In recent decades the accelerating development of remote sensing (RS) and Earth
navigation systems has created a high potential for their exploration in not only
basic research but also in practical applications in disciplines such as forestry,
agriculture, water management, urban planning, and the like. Unfortunately,
current applications of RS in research, practical and management spheres do not
fully reflect the opportunities that RS technologies offer. A prime reason for this
may be a poor awareness of the potential that RS holds for other disciplines and
end users.

This book aims to be a small contribution in helping to bridge the gap between
RS specialists and potential users of RS data and information, and to increase
the knowledge base for the application of the newest RS approaches in different
disciplines.

From the very wide scope of RS we touch here only a small but still per-
haps the most dynamically developing parts, namely imaging spectroscopy, laser
scanning technologies and imaging thermography. And even though only short
introductions to the theoretical principles of these RS branches are presented in
Chapters 1 through 4, and the focus is on airborne platforms, we believe that this
combination of RS tools is of high value owing to their complementarity. While
spectral characteristic from narrow-band imagining spectroscopy and from imag-
ing thermography can deliver information about the properties of objects on the
Earth’s surface, active laser scanning can provide information about structural
parameters and spatial characteristics of those objects. This fusion can signif-
icantly contribute to the description of ecosystems and perhaps even revealing
some causality in their behaviour.

Remote sensing is itself a very interdisciplinary field and it is not possible to
enumerate all of its applications. The results of the project funded by the Czech
Ministry of Education and entitled “Latest technologies of remote sensing in re-

9



10 Preface

search and education” (acronym HyDaP) form the basis of this book, but we went
one step further. The RS team from the Global Change Research Centre AS CR
recruited experts oriented in different aspects of ecosystems assessment who had
almost no or very little background or experience in applications of RS in their
branches. These included experts in soil biology and carbon sequestration from
Biological Centre AS CR; fresh water monitoring from RAWAT consulting; ther-
mal and water regime of landscape from University of South Bohemia and ENKI,
o.p.s.; agriculture, precision farming and forestry from Mendel University in Brno.
The Brno University of Technology contributed material on laser scanning.

The case studies in Chapters 5 to 10 document practical applications of air-
borne RS information in the above mentioned disciplines, going from soil and
water assessment to more structurally complex ecosystems related to vegetation
cover: agroecosystems, forests and landscape.

Each chapter of the book includes a basic recommended reading list related to
the respective topic and comprehensive references to each case study. For these
reasons the book can be seen as a useful information source for many categories
of people. It can be an introductory reading for students who are starting with
remote sensing or students who would like to test the potential of RS in their
disciplines. The later group can be extended to researchers and specialist who
study or observe different types of terrestrial ecosystems or their parts, and who
search for new inspirations, interdisciplinary approaches or just simply need or
would like to scale up their local measurements and information to broad spatial
extent or interpolate point information to a continuous surface. Moreover, the CD
attached to the book with already preprocessed hypterspectral and LiDAR data
will enable different users to learn what the data are like and what information
can be derived from it.

Frantǐsek Zemek
Global Change Research Centre AS CR
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14 List of Abbreviations



1
INTRODUCTION AND BASIC

THEORY OF REMOTE
SENSING

Lucie Homolová, Marek Pivovarńık, and Frantǐsek Zemek

Remote sensing (RS) in its broader sense means obtaining information about ob-
ject through the analysis of data acquired by a device that is not in contact with
the object. For example, our eyes are acting as remote sensors when they re-
spond to the light reflecting from this page. Data on reflected light are analysed
by our mental computer - brain to decode a collection of letters forming words
and sentences. Beyond that, your brain can interpret the information that the
sentences convey. Remotely collected data can be of many forms, including varia-
tions in force, acoustic wave, or electromagnetic energy distributions. In this book
we talk about remote sensing as the interdisciplinary science and the technology
that measures reflected or emitted electromagnetic radiation (EMR) from Earth-
atmosphere system to obtain data and information about its properties. More
specifically, we will talk about digital remote sensing from airborne platforms and
focus on three currently evolving technologies: hyperspectral remote sensing (also
called as imaging spectroscopy), laser scanning and thermal remote sensing.

This chapter introduces in a rather condensed way the fundamental theory
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16 1. Introduction and Basic Theory of Remote Sensing

and basic principles of remote sensing. The discussion here is based on the books
by Lillesand & Kiefer (2000) and Campbell & Wynne (2011). Interested readers
are referred to those books for more details.

1.1 History of Remote Sensing

The origins of remote sensing can plausibly be traced back to the 4th century BC
and Aristotle’s camera obscura. The technology of modern remote sensing began
with the invention of photography. The very first attempts to form an image
date from the early 1800’s. Although the first, rather primitive photographs
were taken on the ground, the practice of taking downward looking pictures from
cameras secured to balloons started in 1858 when Gasper Felix Tournachon took
the first aerial photograph of Paris. With the invention of aircraft in early 1910’s,
the technology of aerial photography moved for next five decades from balloons to
other airborne platforms. As a curiosity, perhaps the most novel and extraordinary
platform for aerial photography, invented at the beginning of the 20th century, was
a fleet of trained pigeons that operated in Germany.

Color photography became available in the mid-1930’s. Massive development
of RS technology came with World Wars. WWI marked the beginning of routine
use of aerial photography when over one million of aerial reconnaissance pho-
tographs were taken. WWII pushed the development in RS technology beyond
the visible part of the electromagnetic spectrum to the near-infrared (NIR) and
microwave regions. The NIR was particularly useful for haze penetration, active
microwave systems (RADAR - Radio Detection And Ranging) to detect and track
moving objects such as ships and aircrafts. The logical entry of RS technology
into space began with the inclusion of automated photocameras, hand in hand
with both Russian and American space programs. First photographs from space
were captured from V-2 rockets that were acquired from Germany after WWII
and launched from New Mexico in 1946. First satellite-based operational systems
for collecting digital information about the Earth on a regular basis were launched
in 1960’s (e.g. the meteorological satellite of the TIROS series). More advanced
systems followed in 1970’s when US launched the Landsat program.

The first exciting images provided by the early meteorological satellites and
manned space missions stimulated NASA to begin a conceptual study of a series
of Earth Resources Technology Satellites (ERTSs). The program that started
in 1967 and resulted in a sequence of eight Earth observing satellites is better
known as the Landsat program (officially renamed from ERTS to Landsat in
1975). The first satellite was launched on July 23, 1972. Nowadays, two satellites
Landsat-7 and Landsat-8 (earlier referred as Landsat Data Continuity Mission)
are still operational and provide digital image data in a multispectral mode (6–
11 spectral bands) and of moderate spatial resolution (30–100 m). The Landsat
program provides the longest continuous space-based global record of the Earth’s
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surface. The unique data provided by Landsat multispectral sensors resulted in
a vast range of applications (Cohen & Goward 2004; Hansen & Loveland 2012).

In general we can conclude that since the 1980’s remote sensing technology,
spaceborne as well as airborne systems, for land, ocean and meteorological obser-
vations has been flowering and rapidly developing. In 1980’s, the development of
airborne hyperspectral remote sensing (also synonymous for imaging spectroscopy
or imaging spectrometry) started. Airborne imaging spectrometers become avail-
able on a wider basis in late 1980’s and early 1990’s. This phase of develop-
ment resulted in the launch of first spaceborne imaging spectrometers MODIS
and MERIS. Nowadays, airborne imaging spectrometers provide data of unprece-
dented radiometric quality with ultra-fine (sub-nanometer) spectral resolution.

Active laser scanning technology (LiDAR – Light Detection And Ranging),
although it had been known since the 1960’s and based on the same principle as
RADAR, was opened to the airborne applications thanks to the development of
precision navigation (GNSS and IMU) technologies which also matured in dur-
ing 1980’s and 1990’s. Early laser scanners from 1990’s were capable of emitting
and recording 2 to 25 thousand pulses per second. Although primitive by today’s
standards, these instruments were already delivering dense data sets, which stim-
ulated a rapid improvement of CAD and GIS processing software to handle such
a large volume of data. Currently, there are more than a hundred (Baltsavias
1999) LiDAR systems operating worldwide that are capable of 250,000 pulses per
second, capturing multiple returns from individual pulses, or even digitizing the
full return waveform. More details about LiDAR can be found in Chapter 4.

Development of thermal infra-red remote sensing technology accelerated dur-
ing WWII thanks to the development of advanced detectors. The technology was
strictly used for military purposes, but in 1960’s the US government declassified
some coarse-resolution thermal infra-red systems. The first multispectral thermal
scanner (TIMS) was developed by NASA JPL in 1980. The multispectral scanner
of Landsat 3, launched in 1978 carried a thermal sensor. ASTER has been pro-
viding multispectral (5 channel) TIR data since 2000. Nowadays, there are two
satellite missions in preparation that will provide multispectral thermal RS data of
global coverage. These are Sentinel-3 developed by ESA and HyspIRI developed
under the NASA governance. Moreover, to our best knowledge, there are cur-
rently three commercially available airborne hyperspectral thermal systems and
a few prototype systems build for research purposes (more details in Section 3.2).

1.2 Basic Concepts of Remote Sensing

1.2.1 The Electromagnetic Spectrum

The most obvious source of electromagnetic (EM) radiation is the Sun. However,
with the exception of objects at absolute zero, all objects also emit EM radiation.
By recording reflected or emitted radiation from objects on the Earth’s surface,
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Table 1.1 Milestones in the history of remote sensing. More complete account can be
found at http://www.geog.ucsb.edu/˜jeff/115a/remotesensinghistory.html or in
Stoney (2005).

Period Milestones in the history

≈ 1827 Joseph Niepce takes first picture of French countryside from
a window. It took 8 hours in bright sunlight to produce the image.

1858
Gaspard Felix Tournachon, known as “Nadar” used a balloon to
ascend to a height of 80m to obtain the first aerial photograph over
Paris.

1858 James Clerk Maxwell, a Scottish physicist, describes colour
additive theory for the producing colour photographs.

1909 Wilbur Wright takes first aerial photograph from an airplane of
Centocelli, Italy, using a motion picture camera.

1910’s WWI provided a boost in the use of aerial photography, but after
the war, enthusiasm waned.

1920’s–30’s Development and first non-military applications of aerial
photography for forestry and agriculture.

1934
American Society of Photogrammetry (now the American Society
for Photogrammetry and Remote Sensing) was founded and
the journal Photogrammetric Engineering published first time.

1940’s
WWII brought more sophisticated techniques into air photo
interpretation and development in nonvisible – infrared and
microwave regions.

1946
First space photographs were captured from V–2 rockets that were
acquired from Germany after WWII and launched out of White
Sands in New Mexico.

1950’s First time the term “remote sensing” is being used by Ms. Evelyn
Pruitt of the U.S. Office of Naval Research.

1960
TIROS-1 (Television and Infrared Observation Satellite) was
launched by NASA as the first declassified satellite used for
meteorological purposes.

1972
Launch of ERTS-1, NASA’s first Earth Resources Technology
Satellite (later renamed Landsat 1). It carried return beam vidicon
and multispectral scanner.

http://www.geog.ucsb.edu/~jeff/115a/remotesensinghistory.html
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Continued Table 1.1

Period Milestones in the history

1977 Launch of Meteosat-1, the first in a long series of European
weather satellites.

1980’s Development of hyperspectral sensors.

1990’s
Remote sensing boom – launch of satellite- and airborne-based
sensors by national agencies and commercial companies. Rapid
development of global remote sensing systems and laser scanning
technology.

1995 Launch of OrbView-1 the world’s first commercial imaging satellite.

1999
Launch of NASA’s flagship of Earth Observing System – Terra
platform that provides global data on the state of atmosphere, land
and oceans (MODIS, ASTER, CERES, MISR and MOPITT
instruments onboard).

2002

Launch of Envisat, the largest Earth observation satellite build by
ESA, that carried 10 instruments to provide continuous observation
of Earth’s land, atmosphere, oceans and ice caps. The mission was
terminated in 2012 due to a sudden loss of contact with the
satellite.

2005 Google Inc. Releases Google maps and Google Earth applications
that greatly increase public awareness of geospatial data.

2010’s Expected launch of ESA series of five Sentinel satellites. (Sentinel 1
already launched.)

and applying knowledge of their behaviour, remote sensing can infer properties of
those objects.

The most familiar electromagnetic radiation is visible light, which represent
only a small, but very important, portion of the entire EM spectrum (400–700 nm).
However, other spectral regions, such as infra-red and microwave, are equally
important for remote sensing. Figure 1.1 shows the major division of the EM
spectrum based on wavelength and convention names. In reality there are no sharp
breaks between the spectral regions, they are only established for convenience. It
should be noted that these divisions can differ among disciplines.

The part of the EM spectrum that is typically used for remote sensing spans
from about 380 nm up to 1 m. The ultraviolet spectrum (UV, 300–380 nm) is
rarely used for remote sensing of Earth surfaces as it is easily scattered by the
atmosphere. Passive remote sensing instruments that measure reflected solar ra-
diation from Earth surfaces operate in so called reflective domain of the EM
spectrum (380–3000 nm), which contains the visible (VIS, 400–720 nm), the near
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(NIR, 720–1300 nm) and the mid (MIR, 1300–3000 nm) infra-red regions. The far
infra-red region (3–1000 µm) of the EM spectrum is fundamentally different from
the visible of the near infra-red regions. The far infra-red radiation is emitted
by Earth surfaces and it is popularly called “heat” or “thermal” energy. More
specifically, the region of 8 to 14 µm refers most often to thermal infra-red (TIR)
in remote sensing. The longer wavelengths of the microwave regions (1 mm up to
1 m) are used by passive and active radar systems, which are beyond the scope of
this book.
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Figure 1.1 The electromagnetic spectrum.

1.2.2 Radiation Laws

The dual characteristics of electromagnetic radiation are described by two theo-
ries, the wave and the particle theory. The wave theory (Figure 1.2) describes EM
energy as travelling in harmonic, sinusoidal waves at the velocity c. The distance
from one wave peak to the next is the wavelength λ, and the number of peaks
passing a fixed point in space per unit time is the wave frequency ν. The electro-
magnetic waves thus obey the general equation

c = νλ. (1.1)

Since the velocity of light c is constant (3 · 108 m sec), frequency and wavelength
for any given wave are related inversely.

The second theory, the theory of particles, states that electromagnetic radia-
tion is emitted and absorbed in discrete units called quanta or photons. As defined
by Max Planck (1858–1947), the energy of a quantum Q is given

Q = hν, (1.2)

where h is Planck’s constant (6.626 · 10−34 J sec) and ν is frequency.
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We can related the wave and particle models of electromagnetic radiation by
solving eq. 1.1 for ν and substituting into eq. 1.2 to obtain

Q = hc

λ
. (1.3)

The energy of a quantum Q decreases with increasing wavelength. This property
has important implication for remote sensing meaning that longer, e.g. microwave
radiation is more difficult to record than shorter wavelengths with their higher
energy content.

The amount of emitted energy increases rapidly with the kinetic temperature
of an object and it is expressed by the Stefan-Boltzman law

M = σT 4, (1.4)

whereM is total radiant emittance from an object (W m−2), σ is Stefan-Boltzmann
constant (5.6697 · 10−8 W m−2 K−4), T is the kinetic temperature of an emitting
object (K). The kinetic temperature is a physical property expressing the amount
of internal energy of an object (solid, liquid or gas) due to the displacement or
rotation of atoms or molecules.

The total amount of radiation emitted by an ideally emitting (i.e. “black-
body”) object varies with its kinetic temperature, and the wavelength at which
an object emits the maximum of the energy is a function only of its kinetic tem-
perature (T ). This relationship is defined by the Wien’s displacement law as
follows

λmax = A

T
, (1.5)

where λmax is the wavelength of maximum emitted radiance (µm), A is a constant
of 2898 µm K, and T is the kinetic temperature (K). Wien’s law tells us that
that higher the kinetic temperature the lower the wavelength with the maximum
emitted radiation.

Both principles described above are clearly summarized by Planck’s radiation
law (Planck 1900). Planck’s radiation law assumes that energy sources behave
as perfect blackbodies. A perfect blackbody is a hypothetical, ideal radiator that
totally absorbs and reemits all energy incident upon it. A perfect blackbody does
not exist in the nature, but can be approximated using laboratory instruments. All
real objects reflect at least a small proportion of the radiation and thus do not act
as perfect blackbodies. They emit only a fraction of the energy that a blackbody
with equivalent temperature can emit. Thus the efficiency of an object radiating
energy compared to a perfect blackbody of the same temperature is described by
a factor called emissivity ε

ε = MRB

MBB
(1.6)

where MRB and MBB is the radiant remittance of a real body and a perfect
blackbody respectively. Emissivity, which for real objects varies with wavelength,
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can reach values between 0 and 1. The emissivity of a perfect blackbody is 1, and
that of a perfect reflector (a whitebody) is 0. In nature, most of the objects have
emissivities falling into a range from 0.85 to 0.99 (Lillesand & Kiefer 2000).

Magnetic

field

Electric

field

Propagation

Direction

Wavelength (λ)

Frequency (v)

Figure 1.2 An electromagnetic wave with sinusoidal vibration states in the electric and
magnetic field. Wavelength is defined as a distance between successive wave peaks. Fre-
quency is defined as number of cycles passing a fixed point per second.

1.2.3 Interactions with the Atmosphere

Irrespective of its source, all radiation detected by remote sensing sensors has to
travel through the atmosphere. The atmosphere can have a profound effect on
the intensity and the spectral composition of radiation reaching a remote sensing
system. As electromagnetic radiation passes the atmosphere, it is subject to
modification by physical process of scattering and absorption.

Scattering
Atmospheric scattering is the redirection of radiation by particles suspended in the
atmosphere or by large molecules of atmospheric gasses. The amount of scattering
depends on the sizes of these particles, their abundance, the wavelengths of the
radiation, and the path length that radiation travels through the atmosphere. We
differentiate two types of scattering, Rayleigh and Mie scattering.

Rayleigh scattering occurs when radiation interacts with molecules of atmo-
spheric gases or very tiny particles that have diameter very small relative to the
wavelength of the radiation. It means that shorter wavelengths are being scattered
much stronger than longer wavelengths. Blue light is scattered about four times
as much as is red light and this is the reason why the sky appears blue. At sun-
rise and sunset, however, the solar radiation travels through a longer atmospheric
path than during midday. With the longer path, the scatter (and subsequently the
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absorption) is so complete that we see only the less scattered, longer wavelengths
of orange and red.

Mie scattering occurs when radiation interacts with particles of the size that is
roughly equivalent to the wavelength of the passing radiation. These particles in-
clude dust, pollen, smoke and water droplets. Although Rayleigh scattering tends
to dominate under most atmospheric conditions, Mie scattering can significantly
influence the visible and the near infra-red regions.

Absorption
Atmospheric absorption occurs when atmospheric constituents retain the passing
radiation and attenuate its transmission. Most of the absorption of solar radiation
is caused by only three atmospheric gasses, namely ozone (O3), carbon dioxide
(CO2) and water vapour (H2O). Although all three barely reach up 3–5 % by
volume, they are responsible for most of the absorption. O3 absorbs shortwave
ultraviolet radiation (below 240 nm) and between 9 and 10 µm in the thermal infra-
red. CO2 absorbs in the mid and far infra-red regions (most strongly from 13 to
17.5 µm). H2O is several times more effective in absorbing radiation than all other
atmospheric gasses combined. The strongest water absorption occurs between 1
and 2.5 µm, 5.5 and 7 µm and above 27 µm. It is obvious that the absorbing
gasses attenuate the passing radiation differently in different spectral regions.
It is also important to realize that some gasses and suspended particles may
emit radiation of their own and amplify the emitted signal recorded by thermal
scanners. In general, spectral regions that are least affected by the atmosphere,
and where radiation transmits easily, are called atmospheric windows (Figure 1.3).
Atmospheric windows have important implications for remote sensing because
they allow RS instruments to measure radiation from the surface without it being
fully absorbed by the atmosphere. In the solar domain, it corresponds to a region
between 400 and 2500 nm, in the thermal domain, the spectral range least affected
by the atmosphere is located between 10 and 12 µm.
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Figure 1.3 Atmospheric transmission for electromagnetic radiation coming from Sun.
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1.2.4 Interaction of Radiation with Matter

As many RS instruments operate in spectral regions in which reflected energy
dominates (i.e. 400–2500 nm), the following discussion on basic theory of radi-
ation interaction with earth surfaces holds true for the reflective domain only.
The thermal domain is covered later on in Chapter 3.

We shall first introduce the basic radiometric quantities. For better overview,
Figure 1.4 provides a brief summary of basic radiometric quantities and their
commonly used units. Their simplified definitions are stated in form of equations.

Radiant energy Q (J)

Radiant flux Φ (W=J s−1)

Φ = dQ/dt

add time dt

add directions dωadd area dA

Radiant flux densities ≈ dΦ/dA Radiant intensity I (W sr−1)

Incident flux = Irradiance E (W m−2) Radiant flux densities ≈ dΦ/dA

(for isotropic surfaces E = πL)

Exitent flux = Radiant excitance M (W m−2)
Radiance L (W m−2sr−1)

L = d2Φ/(dAdω cos θ), where θ is zenith

add area dA

add wavelength λ

add wavelength λ

Spectral reflectance Rλ (unitless)

Rλ = M/E (≈ spectral albedo) Spectral radiance Lλ (W m−2sr−1µm−1)

However, measured remote sensing reflectance quantities combine

hemispherical and directional components (Schaepman-Strub et al., 2006)

Figure 1.4 Summary of radiometric terms and definitions.

When electromagnetic radiation interacts with a surface, it is partly absorbed,
transmitted or scattered (reflected). The principle of energy conservation states
that the incident radiant flux (Ei) is totally distributed among reflected (Er),
transmitted (Et) and absorbed (Ea) fractions.

Ei = Er + Et + Ea. (1.7)

The proportion between reflected, transmitted and absorbed is wavelength depen-
dent and furthermore it depends on chemical composition and surface roughness.
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The reflectance characteristics of earth surfaces may be quantified by mea-
suring the portion of incident energy that is reflected in a specific wavelength.
The geometric behaviour of reflected energy is extremely important for remote
sensing. This is mainly influenced by the surface roughness. Ideal smooth sur-
faces act as a mirror (specular reflectance), whereas ideal rough surfaces reflect
uniformly in all directions (Lambertian reflectance) (Figure 1.5). Most of earth
surfaces reflect somewhere between the specular and Lambertian cases.

The reflective characteristics of a surface are completely described by the bidi-
rectional reflectance distribution function (BRDF). BRDF is a theoretical descrip-
tion of the geometrical behaviour of reflectance with respect to angle of illumina-
tion and observation. Spectral BRDF is defined as ratio of the reflected radiance
from a surface in the direction relative to the incident irradiance on the surface.

BRDF is rather a theoretical concept. Real remote sensing measurements do
not coincide with the bidirectional reflectance quantities as RS sensors integrate
the reflected signal over a large viewing solid angle. Term “reflectance” can be to
some extent ambiguous as it might refer to slightly different physical quantities.
Here we refer interested readers to the paper of Schaepman-Strub et al. (2006),
who clearly define various reflectance quantities used in the optical RS studies.

Ideal specular

reflectance

Ideal diffuse 

(Lambertian) reflectance

Natural reflectance

with forward scattering

Figure 1.5 Specular versus diffuse reflectance.

1.3 Optical and Thermal Properties of Surfaces

All surfaces can be characterized by their spectral signatures, which can act like
a fingerprint. The spectral signature allows us to differentiate among visually
similar surfaces, to classify images into thematic groups with similar spectral
signatures. Furthermore, we can analyse spectral signatures in order to derive
some quantitative properties of surfaces.

In this chapter we show typical spectral signatures in the reflective, as well as
in the thermal domain, of common surfaces (vegetation, soil, water and artificial
surfaces). All spectral signatures are reproduced from the ASTER spectral library
(http://speclib.jpl.nasa.gov/) (Baldridge et al. 2009).

http://speclib.jpl.nasa.gov/
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Vegetation
The spectral signature of vegetation in the reflective domain has a very character-
istic shape (Figure 1.6a). In the visible wavelengths, the spectrum is influenced
by strong absorption of plants’ pigments (chlorophylls a and b absorbing mainly
around 450 and 660 nm). The near infra-red region is characterized by a rather
flat signature influenced by internal leaf structure and overall canopy architecture.
The mid infra-red region exhibits several broad and strong absorption by plant
water (around 1200, 1450, 1940 and 2500 nm). Furthermore, other plant com-
pounds, such as lignin, cellulose, starch, proteins and nitrogen absorb in the mid
infra-red. In the thermal region, compared to the reflective region, the spectral
response (expressed by the object’s emissivity) of vegetation is almost flat without
any prominent features (Figure 1.6b).
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Figure 1.6 Vegetation spectral signatures in the (a) reflective and (b) thermal domain.

Soils
Spectral properties of soils are influenced by four main factors: mineral compo-
sition, soil moisture, organic matter and soil texture. In the reflective domain
(Figure 1.7a), organic matter has a very important influence, because amounts
exceeding 2 % reduce the overall reflectivity and mask the diagnostic absorption
features determined by mineral composition. The absorption features of minerals
are mainly located in the shortwave infra-red region and extend further into the
thermal domain. For example, little absorption located at 2.2 um and sharp broad
feature starting at 2.7 um indicate the presence of clay minerals such as kaolinite
and montmorillonite. Another important factor influencing the reflective proper-
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ties of soils is water. Increasing moisture content generally decreases the overall
reflectance of soils. The most prominent features that are located around 1.4 and
1.9 µm are due to the water absorption. In the thermal domain (Figure 1.7b) the
strong double feature between 7.7 and 9.7 µm is due to quartz presence in soils.
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Figure 1.7 Spectral signatures of dry soils in the (a) reflective and (b) thermal domain.

Water
In very clear waters almost all radiation is absorbed or transmitted except a small
fraction being reflected in the blue region (400–500 nm). However suspended
sediments, plankton, water plants and water turbidity increase the reflective signal
in the near infra-red wavelengths. Still, the reflected signal of water is much lower
compared to snow, which reflects almost all the incident radiation in the visible
wavelengths (Figure ??a). In the thermal region, most of the incident radiation
is being emitted and as seen in Figure 1.8b, the spectral signature is almost flat,
without any prominent features.

Artificial surfaces
It is impossible to provide a characteristic spectral signature of artificial, man-
made surfaces because of their enormous variability. Therefore we show only
a very few examples of materials such as construction asphalt, concrete and a roof-
ing material (Figure 1.9). Their spectra help in the classification of objects in
multispectral or hyperspectral images.
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Figure 1.8 Water and snow spectral signatures in the (a) reflective and (b) thermal
domain.
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Figure 1.9 Spectral signatures of artificial surfaces in the (a) reflective and (b) thermal
domain.



1.4. Principles of Airborne Scanning 29

1.4 Principles of Airborne Scanning

There are three basic types of radiation used in electromagnetic remote sensing:
a) diffused scattering of incoherent EM, b) emission and c) reflection of artificial
coherent waves (Figure 1.10). Acquisition of digital imagery in general can be
accomplished in passive or active regime. The first two types refer to the passive
remote sensing and the third one to active RS.

Sensor

(a)

Sensor

(b)

SensorTransmitter

(c)

Figure 1.10 Three basic types of radiation used in electromagnetic remote sensing: (a) dif-
fused scattering of incoherent EM, (b) emission and (c) reflection of artificial coherent
waves. Passive remote sensing is represented by (a) and (b) and active remote sensing
by (c).

In this book we are going to discuss all three forms of acquisition executed
from an airborne platform. In the first form, a spectrometer records the reflected
solar radiation, usually between 400 and 2500 nm. This is further discussed in
Chapter 2. In the second form, emitted radiation from Earth’s surfaces is recorded
by a thermal scanner. This is further discussed in Chapter 3. The active sensing is
represented here by laser scanning technology, which differs from the previous two
by having distinct operating principles. This is further introduced in Chapter 4.
In terms of operating principles and image geometry, active laser scanning is fairly
distinct from the passive instruments (Figure 1.11). Therefore, the content of this
chapter concerns mainly hyperspectral and thermal RS rather than laser scanning.
In this chapter we will introduce basic operating principles of digital image data
acquisition, clarify terms such as spatial and spectral resolutions and introduce
ancillary onboard and field measurements.

Operating principles of image acquisition
If we imagine a remotely sensed image as a 3D data matrix, x and y dimensions
refer to the horizontal spatial coordinates and the z dimension refers to the spec-
tral domain (see Figure 2.2 for better illustration of the 3D data matrix). In
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Operating principles & Image geometry
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Radiation principles

Figure 1.11 Similar (double lines) and dissimilar (zigzag lines) principles behind the three
forms of remote sensing discussed in this book (hyperspectral, thermal and laser airborne
scanning).

terms of operational data acquisition, there are two most commonly used scan-
ning mechanisms, allowing the formation of the 3D data matrix. The two types
are whiskbroom and pushbroom scanners (Figure 1.12).

A whiskbroom scanner is an electro-mechanical device that collects lines of
individual pixels across-track (perpendicular to the direction of flight) using either
a scanning mirror sweeping from one edge of the flight swath to the other or the
mechanical rotation of the sensor system. The along-track dimension of an image
is acquired by the forward movement of the plane (Figure 1.12a). The particular
advantage of this scanning principle is a higher spectral uniformity since all pixels
are recorded using the same detector. The disadvantage is that the mechanical
part makes the instrument more expensive, more likely to wear out and often
causing resonance that may be observed in the data as striping. Airborne imaging
spectrometers using the whiskbroom scanning principle are e.g. AVIRIS and
HyMap.

A pushbroom scanner is an electronic device that consists of linear detec-
tor array, which enables recording of one cross-track line of an image at once
(Figure 1.12b). The image formation is solely based on the forward, along-track
movement of the sensor. The advantage of pushbroom scanners is that they allow
a longer integration time and therefore the sensors receive a stronger signal in
comparison with whiskbroom scanners. Since an array of detectors is used, the
major drawback is that the detectors can have varying sensitivity and therefore
a perfect, uniform calibration of the detectors response is critical. Airborne imag-
ing spectrometers using the pushbroom scanning principle are e.g. AISA, APEX
and CASI. Examples of thermal sensors are TASI and AISA Owl.

The operational principle of the laser scanning is however totally different.
A laser scanner emits its own light pulses and records travel time from the instru-
ment to the ground surface and back, as well as the intensity of reflected signal.
Details on laser scanning are further discussed in Chapter 4.
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Figure 1.12 Whiskbroom (a) and pushbroom (b) scanning concept used for airborne
hyperspectral remote sensing. (IFOV – instantaneous field of view, FOV – field of view)

Resolutions of a digital RS imager
Quality and information content of RS data are determined by the resolutions of
a RS system. When speaking about resolution, most people would think about
spatial resolution only. The other types of resolution – radiometric, spectral and
temporal, however, are equally important. In a broad sense, resolution of a digital
RS system can be understood as its ability to resolve the smallest possible detail
in signal variation.

Radiometric resolution is the ability of an imaging system to record smallest
change in the signal intensity level. The intrinsic radiometric resolution of a RS
system depends on the signal-to-noise ratio and it is further determined by the
digital coding, i.e. how many bits are used to digitize the continuous intensity
values.

Spectral resolution refers to the ability of an instrument to resolve features in
the electromagnetic spectrum. Spectral resolution is usually described by the full
width at half maximum (FWHM) and sampling interval. FWHM is an interval
measured at the level where the instrument’s spectral response reaches half of its
maximum value (Figure 1.13). The same figure illustrates the spectral sampling
interval which is the distance between peaks of two adjacent spectral bands.

Spatial resolution of an imaging sensor is defined as the size of the smallest
object that can be resolved on the ground. This is primarily determined by
instantaneous field of view (IFOV) of a sensor (Figure 1.12a). IFOV refers the
ground area viewed by a single detector element and, if measured in terms of
the “footprint” on the ground (it can also be measured by solid angle) it varies
with the flight altitude. The terms spatial resolution and pixel size are often used
interchangeably, but in reality, they are not quite the same. Image data can be
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Figure 1.13 Illustration of full width half maximum (FWHM) and spectral sampling.

aggregated so that a pixel size represents an area larger than IFOV, i.e. larger than
the actual spatial resolution of a sensor. However, in raw data it is not possible for
pixels to get information about areas smaller than IFOV Figure 1.14 illustrates
how an image subset of the original spatial resolution of 0.4 m is resampled to
coarser pixel sizes.

a) 0.4 m b) 2.5 m c) 5.0 m

d) 10 m e) 25 m f) 50 m

0 100 200m 

Figure 1.14 A contrived example in which an image subset (with the original pixel size
of 0.4 m) has been degraded by averaging adjacent pixels into increasingly larger blocks.



1.4. Principles of Airborne Scanning 33

For the sake of completeness, we also mention temporal resolution (or revisit
time), which is defined as time elapsed between two consequent image acquisitions
of the same point on the Earth. Temporal resolution is somewhat irrelevant in
airborne RS as the date of image acquisition is usually determined by a user or
an operator. However, for satellite-based RS data it is an important characteristic.

Ancillary onboard and field measurements
Each airborne image acquisition, irrespective of it concerns hyperspectral, thermal
or laser scanning, has to be accompanied by series of ancillary onboard measure-
ments. Some supportive field measurements can be required too. Most important,
and the de facto standard onboard measurements, are the measurements carried
out by an IMU/GNSS unit during an overflight. The unit records exact position,
altitude, speed and angular changes (pitch, roll and heading) of the aircraft. This
information is used for geometric corrections of airborne hyperspectral, thermal,
as well as laser scanning data as it compensates for geometric distortions caused
by variations in the aircraft’s orientation and trajectory during the scanning.

Another type of onboard measurement, potentially useful but less often em-
ployed in practice, is the characterization of the varying atmospheric conditions
during the flight. This can be done by synchronous measurements of downwelling
solar irradiance reaching the aircraft level. This information can be potentially
used for rapid, but less accurate atmospheric corrections of airborne hyperspectral
imagery (Choi & Milton 2001).

In cases where precise calibration and correction of remotely sensed hyper-
spectral or thermal image data is required, it is necessary to carry out supportive
field measurements. Additional data on surface reflectance, geometric accuracy
of selected ground control points and atmospheric conditions shall be measured
simultaneously, or as close as possible, to RS acquisition. Figure 1.15 illustrates
different types of ancillary field measurements.

Field measurements of reflectance properties of natural and artificial surfaces
support the processing of airborne hyperspectral imagery. Field reflectance spec-
tra are used as essential inputs for empirical, as well as physically-based ap-
proaches to remove the effect of the atmosphere (more details on this can be
found in Chapter 2). Furthermore, they can be used to verify the quality of atmo-
spheric corrections. Field reflectance spectra are measured by field spectrometers
and some commonly used instruments are for example FieldSpec models produced
by ASD Inc. (Figure 1.15a) or instruments from Spectra Vista Corporation and
Ocean Optics. When performing the field reflectance measurements, one should
select surfaces that are: i) homogenous in terms of spectral variations from pixel
to pixel, ii) large enough to be identified in the acquired airborne image, iii) rep-
resent the brightness diversity of the imaged area (at least one dark and one
bright target should be used), and iv) spectrally flat and lambertian. Interested
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readers can find more details on field reflectance measurements in Milton (2009)
and McCoy (2004).

Precise geometric location of ground control points (GCPs) measured by
a GNSS system have dual uses in processing of any kind of remotely sensed data.
First, they serve to precisely georeferenced the image data, i.e. to adjust an image
to a known coordinate system. Second, it allows evaluating the accuracy of the
image georeferencing by calculating the root mean square error between actual
positions of GCPs and their calculated position on the image after georeferenc-
ing. That is why the GCPs should be easily identified on the images (e.g. a road
crossing, an edge of a parcel) and spread evenly across the imaged area. Meet-
ing the later condition is becomes obligatory especially when higher polynomial
transformation is being used for georeferencing.

Characterisation of the atmospheric conditions at the time and location of
the flight is important as this information can be used to improve atmospheric
corrections of hyperspectral and thermal imagery (Richter & Schläpfer 2002).
Most often, ground-based multi-band devices called sun photometers are used
to estimate aerosol optical thickness and water vapour content. Examples of
frequently used sun photomters are Microtops II (Solar Light Company, USA,
Figure 1.15c) or Cimel (Cimel Electronique S.A.S, Fr).

(a) (b) (c)

Figure 1.15 Ancillary ground measurements of (a) surface reflectance properties (ASD
Field Spec-3), (b) location of geometric ground control points (TOPCON), (c) atmo-
spheric characterisation (Microtops II).



1.4. Principles of Airborne Scanning 35

Recommended Reading

Campbell, J.B. & Wynne, R.H. 2011. Introduction to remote sensing (5th edition).
The Guilford Press, 72 Spring Street, New York NY 10012.

Lillesand, T.M. & Kiefer, R.W. 2000. Remote Sensing and Image Interpretation
(4th edition). John Wiley & Sons, Inc., New York.

Rees, W.G. 2012. Physical Principles of Remote Sensing (3rd edition). Cambridge
University Press.



36 1. Introduction and Basic Theory of Remote Sensing



2
HYPERSPECTRAL DATA

Lucie Homolová, Jan Hanuš, Tomáš Fabiánek, and Frantǐsek Zemek

2.1 Characteristics of Hyperspectral Data

Hyperspectral remote sensing or imaging spectroscopy, a synonym that is exten-
sively being used in scientific literature, is a rapidly developing field of remote
sensing (Ustin et al. 2004; Kokaly et al. 2009; Schaepman et al. 2009). What
makes hyperspectral RS so specific is that it uses the practice of spectroscopy to
acquire images in a large number of narrow, adjacent spectral bands. Compared
to broadband multispectral RS, hyperspectral data contain typically hundreds of
narrow spectral bands (typically 1–10 nm in width) such that for each pixel a con-
tinuous spectral signature over a certain range of wavelengths can be derived.
Figure 2.1 shows the contrast between a continuous spectral signature of veg-
etation acquired by a hyperspectral instruments and spectral responses of three
commonly used multispectral RS instruments – MODIS, Landsat TM and Spot 4.
In general, airborne imaging spectrometers differ from other RS instruments in
terms of their exceptionally fine spectral, spatial and radiometric resolutions and
their need for careful calibration.

The concept of spectroscopy has existed since eighteen century, but the imag-
ing part of this became technically possible only in early 1980’s. Figure 2.2 il-
lustrates the generalized concept of imaging spectroscopy. A hyperspectral image
is represented as a three-dimensional data cube, a series of superimposed image

37
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layers, where each layer carries information about surface reflectance at an indi-
vidual wavelength interval.

500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 (
%

)

(a)

500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 (
%

)

(b)

500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 (
%

)

(c)

500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

Wavelength (nm)

R
ef

le
ct

an
ce

 (
%

)

(d)

Figure 2.1 Spectral signature of fresh (black line) and dry (grey line) vegetation as de-
rived from (a) laboratory spectroradiometer (USGS database) resampled to the spectral
resolution of (b) MODIS, (c) Landsat TM, (d) Spot 4 remote sensing instruments.

2.2 Overview of Airborne Hyperspectral Sensors

Ongoing development of imaging spectroscopy since 80’s resulted in many research
prototypes, as well as many commercially available airborne hyperspectral sen-
sors. Currently only tree spaceborne instruments can provide truly hyperspectral
data. They are Hyperion on EO-1 (Pearlman et al. 2003), CHRIS on PROBA
(Barnsley et al. 2004), and Resurs-P (Kirilin et al. 2010). In Table 2.1 we
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Figure 2.2 The concept of imaging spectroscopy illustrated with a HyMap image scene
from the region of Sokolov displayed as a hyperspectral cube. The top most layer rep-
resents a three-band colour composite (R = 646.5 nm, G = 543.6 nm, B = 455.4 nm).
The depth of the cube represents the spectral dimension, which displays as contiguous
spectral signatures, as depicted on the right graph. Colour dots on the left image indicate
from where the spectral signatures for vegetation, soil, water and roofing material were
extracted for the purposes of demonstration.

present an overview of currently operational airborne hyperspectral instruments.
Airborne imaging spectrometers that are nowadays rarely used are deliberately
omitted, although we have to acknowledge several key projects that have had
an impact on the evolution of the state-of-art imaging spectrometers. These in-
clude: AIS - Airborne Imaging Spectrometer - the precursor of the AVIRIS in-
strument developed by the NASA Jet Propulsion Laboratory (Vane et al. 1984);
FLI/PMI instrument that can be considered the precursor of CASI (Gower et al.
1992); ROSIS - an airborne forerunner instrument for the spaceborne MERIS mis-
sion developed by DLR (Kunkel et al. 1991), and some others. For further reading
about the evolution of imaging spectrometers we refer the reader to Schaepman
(2009).

The current trend indicates that hyperspectral instruments are becoming more
commercially available. They are also getting smaller, allowing them to be carried
by small unmanned airborne vehicles (Micro-Hyperspec system from Headwall
Photonics, Cubert’s UHD 185 system, Pika system from Recon and many others).

At the moment, the only provider of high quality airborne hyperspectral data
in the Czech Republic is CzechGlobe. CzechGlobe operates AISA Eagle (a VNIR
system developed by Specim, Ltd.) and three instruments (CASI, SASI and TASI
developed by ITRES, Ltd.). The suite of Itress instruments covers the entire
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optical, as well as the thermal infrared domain. At CzechGlobe all sensors are
integrated into an airborne carrier Cessna 208B Grand Caravan equipped with two
fuselages slits. The entire imaging system at CzechGlobe is called FLIS (Hanuš
et al. 2014).

2.3 Basic Pre-processing of Hyperspectral Data

In the context of hyperspectral data analysis, the pre-processing steps usually re-
fer to three major operations. These are: i) radiometric corrections that convert
raw DN values into at-sensor radiance values, ii) atmospheric corrections that
remove the effect of the atmosphere and convert at-sensor radiance to at-surface
reflectance or brightness temperature values, and iii) geometric corrections that
compensate image distortions caused by the aircraft movements and bring an im-
age into registration with a map or another image. All three steps are usually
accompanied with some quality assessment.

Especially for research purposes, excellent sensor calibration and image correc-
tions are ultimately required. In this case, it is necessary to carry out supportive
ground measurements, where additional data on surface reflectance, geometric ac-
curacy of selected ground control points and atmospheric conditions are measured
simultaneously to RS data acquisition. If feasible, each airborne campaign shall
be accompanied with supportive field measurements. However, this is not always
possible and for those applications where the radiometric quality of RS data is not
of the highest priority it is possible to perform simplified atmospheric corrections,
i.e. by calculating so called apparent reflectance.

The image data pre-processing is usually carried by the institute that operates
an imaging spectrometer. In most cases, end users are provided with geometri-
cally corrected at-surface reflectance data or at-sensor radiance together with the
sensor characteristics needed for further analysis. It should be mentioned here
that, although certain pre-processing steps are frequently used, there is no defini-
tive standard pre-processing chain available for hyperspectral RS data. Often,
the pre-processing steps have been tailored to a certain instrument or to match
specific requirements of a project. It is also often the case that each data provider
developed its own pre-processing chain using commercial and/or in-house tools
and software. The following sections will introduce a processing chain that in-
cludes radiometric, atmospheric and geometric corrections of hyperspectral RS
data as they are currently being implemented at CzechGlobe. Figure 2.3 shows
a schematic workflow of the pre-processing chain for CASI hyperspectral data at
CzechGlobe. The workflow for TASI has not yet been fully established.

2.3.1 Radiometric Calibration

Incoming radiation from a surface reaching an airborne imaging spectrometer is
split by a set of lenses and filters into the wavelength ranges specified by the



2.3. Basic Pre-processing of Hyperspectral Data 41

Ta
bl

e
2.

1
O

ve
rv

ie
w

of
cu

rr
en

tly
op

er
at

io
na

la
irb

or
ne

hy
pe

rs
pe

ct
ra

ls
en

so
rs

in
th

e
re

fle
ct

iv
e

do
m

ai
n.

N
am

e
Fu

ll
na

m
e

M
ax

.
N

o.
of

ba
nd

s

Sp
ec

tr
al

ra
ng

e
(n

m
)

Sp
ec

tr
al

sa
m

pl
in

g
(n

m
)

M
an

uf
ac

tu
re

r/
O

pe
ra

to
r

(I
nf

or
m

at
io

n
so

ur
ce

)

A
H

S
80

A
irb

or
ne

H
yp

er
sp

ec
tr

al
Sc

an
ne

r
80

44
1–

13
17

0
30

–5
00

A
rg

on
st

(f
or

m
er

ly
Se

nS
yT

ec
h

in
c.

,
D

ae
da

lu
s

in
c.

)/
e.

g.
IN

TA
(h

tt
p:

//
ww

w.
uv

.e
s/

˜l
eo

/
se

n2
fl

ex
/a

hs
.h

tm
)

A
IS

A
D

ua
l

(E
ag

le
/H

aw
k)

A
irb

or
ne

Im
ag

in
g

Sp
ec

tr
om

et
er

fo
r

A
pp

lic
at

io
ns

48
8/

25
4

40
0–

97
0/

97
0–

25
00

1.
2–

9.
2/

6.
3

Sp
ec

im
Lt

d.
/

e.
g.

N
ER

C
,U

ni
v.

of
D

eb
re

ce
n,

C
ze

ch
G

lo
be

(E
ag

le
on

ly
)

(h
tt

p:
//

sp
ec

im
.f

i/
in

de
x.

ph
p/

pr
od

uc
ts

/a
ir

bo
rn

e)

A
PE

X
A

irb
or

ne
Pr

ism
EX

pe
rim

en
t

33
4

38
0–

25
00

0.
6–

10
ES

A
(S

w
iss

-B
el

gi
an

co
ns

or
tiu

m
)/

V
ito

(h
tt

p:
//

ww
w.

ap
ex

-e
sa

.o
rg

/)

AV
IR

IS
A

irb
or

ne
V

isi
bl

e
In

fra
R

ed
Im

ag
in

g
Sp

ec
tr

om
et

er
22

4
40

0-
25

00
10

N
A

SA
,J

PL
/

N
A

SA
,J

PL
(h

tt
p:

//
av

ir
is

.j
pl

.n
as

a.
go

v/
)

C
A

SI
/S

A
SI

C
om

pa
ct

/S
W

IR
A

irb
or

ne
Sp

ec
tr

og
ra

ph
ic

Im
ag

er
28

8/
10

0
36

5–
10

50
/

95
0–

24
50

3.
5/

12
It

re
s

Lt
d.

/
C

ze
ch

G
lo

be
(h

tt
p:

//
ww

w.
it

re
s.

co
m/

pr
od

uc
ts

/i
ma

ge
rs

)

H
yM

ap
12

8
45

0–
25

00
15

–2
0

In
te

gr
at

ed
Sp

ec
tr

on
ic

s
Pt

y
Lt

d
/

H
yV

ist
a

C
or

p.

H
yS

pe
x

V
N

IR
/S

W
IR

16
0/

25
6

40
0–

10
00

/
10

00
–2

50
0

3.
7/

6
N

EO
/

e.
g.

D
LR

(h
tt

p:
//

ww
w.

hy
sp

ex
.n

o/
pr

od
uc

ts
/)

PR
IS

M
Po

rt
ab

le
R

em
ot

e
Im

ag
in

g
Sp

ec
tr

oM
et

er
85

+
2

35
0–

10
50

+
12

40
–1

61
0

2.
8

+
n.

a.
N

A
SA

,J
PL

/
N

A
SA

JP
L

(h
tt

p:
//

pr
is

m.
jp

l.
na

sa
.g

ov
)

http://www.uv.es/~leo/sen2flex/ahs.htm
http://www.uv.es/~leo/sen2flex/ahs.htm
http://specim.fi/index.php/products/airborne
http://specim.fi/index.php/products/airborne
http://www.apex-esa.org/
http://aviris.jpl.nasa.gov/
http://www.itres.com/products/imagers
http://www.itres.com/products/imagers
http://www.hyspex.no/products/
http://www.hyspex.no/products/
http://prism.jpl.nasa.gov


42 2. Hyperspectral Data
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GEO-REFERENCING

QUALITY
ASSESSMENT

Onboard
measurements
(IMU/GPS)

Hyperspectral
imaging

Field measurements
(GCPs, reference

spectra, sunphotometer)

Georeferenced
at-surface reflectance (L2B)

Atmospherically corrected
at-surface reflectance (L2A)

Radiometrically corrected
at-sensor radiance (L1)

Raw image data (L0)

Evaluate quality of
atm. corr. and
geo-referencing

Dark image

Atmosph. param.
(visibility, water)

Calibration
parameters

DEM/DSM

Boresight angles

Navigation data
(roll, pitch, yaw)

Geometric
sensor model

Reference spectra

Figure 2.3 Pre-processing chain for airborne hyperspectral data.

instrument. The signal charges accumulated on the detector elements are passed
through an amplifier and a digitizer. A digital signal (digitized in 8, 12 or 16 bits)
is directly proportional to the incoming photon energy, but not measured in any
physically meaningful unit. It is expressed in digital numbers (DN). Therefore
a radiometric correction has to be applied in order to convert raw DN values into
a physically meaningful parameter – spectral radiance expressed as photon flux
power per unit solid angle per wavelength interval (cf. Figure 2.4a and b). At-
sensor spectral radiance L is calculated from raw DN values using given calibration
gain and offset values as follows:

L = C0 + C1DN. (2.1)
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The gain (C1) and offset (C0) values are parameters of a radiometric response
function that is empirically established for each spectral band. The radiometric
response function is established during radiometric calibration. Radiometric cal-
ibration is a process where a sensor measures a signal originating from a light
source with known spectral radiance in an integrating sphere (Figure 2.5).
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Figure 2.4 (a) Raw digital numbers (unitless), (b) Radiance (mW cm−2 sr−1 nm−1),
(c) Reflectance (%) signatures of vegetation (thick line) and asphalt (thin line) surfaces
as obtained from AISA Eagle spectrometer.

2.3.2 Atmospheric Corrections

The signal that is recorded by an imaging spectroradiometer is strongly influ-
enced by scattering and absorption in the atmosphere of the radiation reflected
or emitted by the surface (see Chapter 1). Influences of water vapour absorption
at approximately 0.94, 1.14, 1.38 and 1.88 µm, of oxygen at 0.76 µm, and of car-
bon dioxide near 2.08 µm are clearly seen in the radiance spectrum. Wavelengths
below 1 µm are affected by molecular and aerosol scattering. Moreover, the total
radiation signal reaching a sensor (L) consists of three components (Figure 2.6):
i) path radiance – photons reaching senor’s IFOV without having been in con-
tact with ground (L1), ii) reflected radiation from a pixel (L2), and iii) reflected
radiation from the neighbourhood (L3).

As the majority of RS applications are based on at-surface reflectance, where
results from different sites, sensors and acquisition times are compared, it is
necessary to remove unwanted atmospheric effects. This process is called at-
mospheric correction and it converts at-sensor radiance to at-surface reflectance
(cross-compare a raw signal with at-sensor radiance and surface reflectance shown
at Figure 2.4). We wish to clarify at this point that the term “reflectance” in this
book is used in a common sense and for a review on different reflectance quantities
we refer curious readers to a review of Schaepman-Strub et al. (2006). Atmo-
spheric corrections algorithms can be divided into two major groups: empirical
methods that produce apparent reflectance, and methods based on rigorous at-
mospheric radiative transfer modelling that produce absolute reflectance. A very
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Figure 2.5 Example of a calibration facility at Czechglobe. Calibration of a hyperspectral
sensor (mounted on the top of the frame) using an integration sphere from LabSphere©.

good review of existing atmospheric correction approaches is given in Gao et al.
(2009) and here we briefly introduce the two groups.

Empirical approaches
Empirical atmospheric correction approaches produce apparent reflectance that
is relative to a standard target from the image scene. Several methods have been
developed, some of them specifically targeting water or land surfaces. For land
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Sensor

Surface

L1 L2 L3

Figure 2.6 Schematic sketch of solar radiation components in flat terrain conditions. L1 =
path radiance, L2 = reflected radiance, L3 = adjacency radiance.

surfaces, some of the empirical corrections are: Flat Field correction (FF), Inter-
nal Average Relative Reflectance method (IARR), and Empirical Line correction
(EL). Taking the case of the Empirical Line correction, the method forces the
image radiance (or DN) data to match selected field reflectance spectra. This
method requires at least one bright target and one dark target to establish a lin-
ear regression between the field measured reflectance spectra and corresponding
image data. Gains and offset values are retrieved for each spectral band and
applied to the entire image scene. The EL method produces spectra that are
most comparable to reflectance spectra measured in the field and locally it is
very effective. However, if the atmospheric conditions changes outside the area
with ground reference targets, the reflectance calculation is less accurate and will
contain atmospheric features. The EL method ultimately requires simultaneous
measurements of ground reflectance on carefully selected, homogenous reference
targets, which is not the case for the other two (i.e. FF, IARR).

Another example of fast empirical atmospheric corrections, where field data
are not required, is the calculation of apparent at-sensor reflectance. In this case,
the image data are normalized to the downwelling solar irradiance incident at
the aircraft level. The incident solar irradiance is recorded simultaneously with
image acquisition using a diffuse cosine receptor. This rapid correction normalizes
the signal differences between flight lines and removes the atmospheric effects
above the aircraft level. Depending on the flight altitude and current atmospheric
situation, the at-sensor apparent reflectance can be to smaller or larger extent
still influenced by the atmosphere below an aircraft.
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Radiative transfer modelling approaches
Atmospheric corrections based on radiative transfer model (RTM) allow calcula-
tion of absolute at-surface reflectance without a-priori knowledge of surface re-
flectance properties. Atmospheric corrections consist of two major steps: esti-
mation of atmospheric parameters and retrieval of surface reflectance. The most
important atmospheric parameters are aerosol type, visibility (or optical thick-
ness) and water vapour, because they vary in time and space rapidly. Visibility
and water vapour can be measured in-situ using a sunphotometer (Figure 1.15c
in Chapter 1) or they can be estimated directly from the image data. Retrieval
of surface reflectance is most commonly done using the look-up table method, in
which an RTM is used to pre-compute atmospheric transmittance for each wave-
length and for given combination of key atmospheric parameters and operational
altitudes. Assuming flat terrain without adjacency effects and cloud-free sky, the
at-sensor radiance (L) for surface reflectance (ρ) at given wavelength λ can be
expressed as follows:

L = Lpath + ρτEg
π

, (2.2)

where Lpath is path radiance (equivalent to L1 at Figure 2.6), τ is total ground-
to-sensor atmospheric transmittance calculated as the sum of direct and diffuse
transmittance, Eg is global ground irradiance calculated as sum of direct and dif-
fuse irradiance for a ground surface with zero reflectance. Detailed description
of atmospheric radiative transfer, estimation of atmospheric parameters and at-
mospheric corrections are beyond the scope of this chapter, however, interesting
readers are referred to e.g., Richter & Schläpfer (2002), Richter (2012) or Gao et
al. (2009).

The individual radiation components of eq. 2.2 and total atmosphere transmit-
tance are calculated by an atmospheric RTM. Two RT models commonly employed
for atmospheric corrections of airborne imaging spectroscopy are MODTRAN and
6S. MODTRAN, the latest release being MODTRAN-5 (Berk et al. 1989; Berk
et al. 2006), is more widespread, although a comparison of both models has in-
dicated some major advantages of the 6S vector version (Kotchenova et al. 2006)
due to its support of polarisation effects. These two models serve as basis for many
software toolboxes developed for atmospheric correction of airborne hyperspectral
imagery. An overview of some tools for atmospheric corrections based on RTM
is given in Table 2.2. Some of these tools include more advanced features, e.g.
ATCOR-4 (Richter, (2012) offers additional corrections for nadir normalization
and BRDF correction.

2.3.3 Geometric Pre-processing

Data image acquisition from an airborne platform is never as stable as acquisi-
tion from a satellite platform. Airborne hyperspectral data suffer from spatial
distortions that can be so severe that they cannot be used directly as a map base
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without any pre-processing. The sources of geometric distortions are a sensor’s in-
herent geometric characteristics, the aircraft motions during the data acquisitions
and terrain variations. Such distortions cannot be easily corrected using ground
control points, since the aircraft movements cannot be approximated accurately
by polynomial transformation of the image. Therefore geometric pre-processing
of airborne hyperspectral data is done in more sophisticated way when line- or
even pixel-wise calculation has to be performed.

Fortunately, aircrafts are nowadays equipped with an onboard IMU/GNSS
system that records instantaneous position of the aircraft (longitude, latitude and
altitude) and its movement (roll, pitch and heading angles). This data, together
with sensor geometric characteristics (e.g. field of view, swath width) and a dig-
ital terrain model, are key input data for geometric pre-processing of airborne
hyperspectral data. Geometric pre-processing (or geo-referencing) is performed
in two successive steps, direct geocoding and resampling to a selected coordinate
system.

Direct geocoding of airborne images consists of geometric corrections and or-
thogonalization. Geometric corrections compensate for image geometric distor-
tions caused by variations in flight path and attitude of a plane. Orthogonalization
compensates distortion caused by sensor acquisition geometry and surface topog-
raphy. The coordinates of each pixel of the hyperspectral image are determined
as if on a flat terrain.

During the resampling the image data are transformed to a regular grid of the
reference frame (i.e. a desired coordinate system such as UTM map projection).
In this step, a desired spatial resolution and a method for interpolation have to
be selected. Examples of well-known and commonly used interpolation methods
are nearest neighbour, bilinear or cubic interpolation. Among these, only the
nearest neighbour interpolation preserves the original spectral data. With other
interpolation methods the new value of a resampled pixel is calculated as some
combination of its surrounding pixels. For airborne hyperspectral RS, a paradigm
so far has been to avoid as much as possible interpolated spectra in order to pre-
serve the physical meaning of spectral signatures for classification and quantitative
analysis.

Software tools for geometric pre-processing of hyperspectral airborne data are
usually supplied by a sensor producer (e.g. CaliGeo for processing of AISA images
developed by Specim Ltd, GeoCorr supplied by ITRES, Ltd. for processing of
image data from a suite of their sensors). An example of a commercially available
tool for complex geometric pre-processing of commonly available airborne imaging
spectrometers (Table 2.1) is the PARGE software (Schläpfer & Richter 2002).

2.3.4 Quality Assessment

More and more remote sensing applications and data users require information
about the quality of hyperspectral data. This information is highly important
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when data from multiple sources or multiple acquisitions are analysed together.
Quality assessment of hyperspectral data is highly dependent on several factors
and parameters. Each stage of the data pre-processing chain can be characterised
by quality indicators. The quality indicators can be calculated for the entire image
area or on the pixel-basis.

The most important indicator of the radiometric quality is the signal-to-noise
ratio (SNR). The SNR of a sensor is specified as a ratio value and for modern
hyperspectral instruments the producers declare up to 1000:1 (theoretical maxi-
mum). However, practical values of SNR are usually lower (e.g. 10:1 to 300:1),
especially for surfaces and wavelength regions with low reflectance.

The quality of atmospheric corrections can be evaluated by means of indepen-
dent ground reference spectra measured simultaneously with image acquisition.
The reference targets have to be precisely located on the images and the reference
spectra are compared with spectral signatures extracted from the image data.
Spectra can be compared visually or by calculating root mean square error be-
tween the two. It is very hard to provide one objective number, but as a rule of
thumb, RMSE below 2 % is excellent, and 5 % can be considered as a satisfactory
accuracy (Richter & Schläpfer 2002).

Geometric quality of hyperspectral data can be evaluated by calculating hor-
izontal accuracy using a set of independent GCPs. The horizontal accuracy is
mainly influenced by the resolution and the accuracy of underlying DEM used
during geometric pre-processing. In the ideal case, when all ancillary data (nav-
igation data and DEM) are available and of high resolution, we can reach the
horizontal accuracy equal to the size of a pixel.

Furthermore, during the pre-processing chain, pixel-based quality flags can
characterize bad pixels, such as pixels with saturated signals, areas influenced by
clouds, haze and cloud shadows.
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THERMAL DATA
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Vladimı́r Jirka, Hana Vinciková, Jan Procházka, and Petr Lechner

Airborne thermal data offers valuable information about land surfaces resulting in
many applications in different fields such as energy balance, evapotranspiration,
water temperature assessment, vegetation applications, mineral mapping, urban
studies, volcano surveillance, landmine fields mapping, drainage system detection,
archaeological studies and others. It is important to realize that data obtained
from airborne thermal instruments can be interpreted and analysed in two ways.
First, only the visual information is analysed, (e.g. thermovision cameras em-
ployed to search for missing people, detection of specific phenomena and objects).
Second, the radiometric information content allowing quantitative analysis of tem-
perature and spectral properties is considered. One of the applications focusing on
landscape thermal regime is described in detail in Chapter 10. The core analyses
of thermal data are related to object detection and quantification of temperature
and spectral features.

In order to interpret thermal data correctly, it is necessary to understand their
characteristics and related principles of data acquisition. These topics are briefly
discussed in the following sections. In addition, an overview of currently available
instruments with their specifications is provided. The references, in which readers
can find more details, are attached at the end of this chapter.
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3.1 Thermal Data Characteristics

Every object emits electromagnetic energy. The amount and the spectral distri-
bution of the emitted energy depend on the object’s temperature and emissivity.
In the case of an ideal blackbody the amount and spectral distribution of emit-
ted energy are described by Planck’s law (see Section 1.2.2). Most natural and
artificial objects that can be observed using airborne RS have temperatures in
the range of 270–330 K. According to the Planck’s law this means that the bulk
of thermal radiation can be detected in two atmospheric windows 3–5 µm and
8–14 µm. In the first interval not only emitted radiation is recorded but also re-
flected solar radiation. Therefore, these data are usually acquired at night, when
the reflected radiation is minimized. The second atmospheric window is more
relevant for acquisition of remotely sensed thermal data, since the peak of emit-
ted radiation is situated here (a consequence of the Wien’s displacement law as
described in 1.2.2). Further on we will discuss only the emitted thermal radiation
in the second atmospheric window.

An image taken in the thermal part of the EM spectrum is either known as
a thermogram in which case each pixel contains only a single value registering the
intensity of thermal radiation at that location, or a thermal hyperspectral cube
(Figure 2.2) in which case each pixel contains a spectral record. If thermal image
data are well corrected, they can be used for creation of temperature maps. Unlike
conventional field measurements, which provide point temperature information,
airborne thermal data are spatially continuous. This information may be quali-
tative (for comparisons) and quantitative in nature (for getting absolute values).
For qualitative purposes, atmospheric corrections of thermal imagery data are not
necessary. However, in case of quantitative analyses an accurate instrument cali-
bration, geometrical and atmospheric corrections are ultimately required (further
discussed in Section 3.3). In order to perform radiometric calibration and atmo-
spheric corrections correctly one has to understand the radiative transfer equation
as described below.

3.1.1 Properties Determining the Thermal Radiation of an Ob-
ject

From the perspective of RS, the most important thermal property of an object
is emissivity (ε). The principle of emissivity and some examples of emissivity
spectral curves can be revisited in Chapter 1. In short, ε can be understood
as thermal radiation emission effectiveness in comparison with thermal radiation
emitted by a blackbody of the same temperature. Emissivity in general depends
on wavelength, temperature and on the direction of the emission. Since in remote
sensing an observed object’s temperature mostly varies within the range of 270–
330 K and the observation angle is close to nadir, it can be assumed that ε depends
on the wavelength mainly.
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In general, when acquiring thermal RS data, one shall consider actual weather
condition, season and daytime as all these influences thermal properties of an ob-
ject. Besides emissivity, the following thermal properties can cause variation in
thermal image data. These are:

• thermal conductivity is a measure of the rate at which heat passes through
a material; i.e. an ability to conduct heat [W m−1 K−1];

• thermal capacity determines how well a material stores heat, i.e. an ability
to retain warmth [J K−1];

• thermal inertia is a measure of the response of a material to temperature
changes, i.e. the rate of the temperature change [J m−2 K−1 s−1/2].

Moreover, additional thermal properties can be used for different applications,
such as a building up a relationship of thermal inertia and soil moisture (Maltese
et al. 2013).

3.1.2 Surface Thermal Behaviour as a Result of Energy Trans-
formations

The thermal behaviour of a surface can be perceived as a thermodynamic state
of that surface, as well as a result of energy transformations taking place at
the surface. Changes in surface temperature are due to exchanges of radiation
between surface, its surroundings and conduction of the heat to the ground. This
influences the amount of energy entering the system (a surface), as well as amount
of energy leaving the system. Under normal conditions in nature the formation
of surface temperature mostly involves energy transformation during the phase
changes of water (water condensation and evaporation, water thaw and freezing,
water sublimation and desublimation) as well as the body heat flux, to a certain
degree.

In order to explain and to understand changes in surface temperature, we need
to start with the radiation balance equation:

Rn = R↓s −R↑s +R↓l −R↑l . (3.1)

The equation expresses the balance of energy inputs entering into and outputs
leaving from a natural system in the form of the short-wave (Rs) and long-wave
(Rl) EM radiation. The source of short-wave radiation is the Sun (R↓s) and a cer-
tain portion of incoming short-wave radiation is reflected upon incidence (R↑s).
The long-wave radiation balance is given by the energy radiation emitted in the
thermal infrared part of the electromagnetic spectrum from the Earth surface (R↑l )
and atmosphere (R↓l ). The result of radiation balance represents the so called to-
tal net radiation (Rn), which is used for processes of heat transformation into
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individual heat fluxes. The total net radiation can be also described within the
frame of heat balance as follows:

Rn = J + P +G+H + LE, (3.2)

where J is the energy consumed for the change in surface temperature; P is the
energy consumed for photosynthesis; G is the heat flux entering the ground; H
is the sensible heat flux into the atmosphere; and LE is the latent heat flux
of evaporation. Since the amount of energy consumed for the change in surface
temperature and photosynthesis tends to be very low, J and P fluxes are normally
omitted when considering energy transformations. Only the heat flux into the
ground, sensible heat flux and latent heat flux are significantly involved in this
process. All mentioned energy fluxes carry a positive sign if downward and are
usually described in W m−2.

From a simple modification of the heat balance equation (3.2) we can obtain
following expression of sensible heat flux:

H = Rn −G− LE. (3.3)

Furthermore, sensible heat flux is possible to express analogically to the Ohm’s
law as a ratio of temperature gradient δT of a surface temperature Ts and the air
temperature Ta to aerodynamic resistance of atmosphere for heat and momentum
transfer ra [s m−1] (Thom 1975):

H = ρcpδT

ra
= ρcp (Ts − Ta)

ra
, (3.4)

where ρ is the density of air [kg m−3]; and cp is the specific thermal capacity of
dry air [J kg−1 K−1]. Note that ra is a function of surface aerodynamic charac-
teristics (e.g. surface roughness), wind speed, vertical temperature profile and
atmospheric stability. With combination of equations 3.3 and 3.4 we can express
surface temperature in the following way:

Ts = (Rn −G− LE) ra
ρcp

+ Ta. (3.5)

The above mentioned equation shows that surface temperature involves the solar
radiation balance, transfer of energy into the body itself (ground), evaporation
and, alternatively, water condensation, aerodynamic properties of the surface,
wind flow and environment properties (e.g., air heat capacity, air specific den-
sity and air temperature). The amount of solar radiation, surface aerodynamic
properties and wind flow act as energy sources, evapotranspiration consumes the
energy. When observing natural surfaces (Figure 3.1), temperature variations of
surfaces covered with vegetation are of a smaller extent than those without veg-
etation. The same holds true for dry and wet areas. If it is true that surface
temperature is a result of energy transformations, we can significantly influence
the entire thermal regime at the landscape level, by adjusting the water regime
and vegetation coverage.
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Figure 3.1 Temperature maps of the Třeboň town centre and its surroundings in the
morning and noon during a cloudless summer day (July 27, 2008). The built-up area
accumulates heat and forms a “heat island” in the town. Similarly, heat accumulates
in water bodies (the Svět pond in the lower part of the image). Surfaces covered with
vegetation in the right part of the image, where strong evapotranspiration occurs, exhibit
less dynamic changes in surface temperature throughout the day. Note that the colour
scale is different in the two images.

3.1.3 Radiative Transfer Equation

The signal measured by a sensor (Lm) consists of radiance emitted from the
ground, reflected downwelling atmospheric radiance (L↓atm) and the atmospheric
upwelling radiance (L↑atm). Contribution of these three components is expressed
by a radiative transfer equation (RTE) as follows:

Lm = τεB(Ts) + τ(1 − ε)L↓atm + L↑atm, (3.6)

where B(Ts) is radiance of the object at temperature Ts according to the Planck’s
law, ε is the object’s emissivity and τ is atmospheric transmittance. It is impor-
tant to emphasize that all elements in the equation are wavelength dependent.
The meaning of the RTE is illustrated in the Figure 3.2, where ρ is reflectance.
Kirchhoff’s law of thermal radiation implies that reflectance ρ can be rewritten as
(1 − ε) for opaque materials.
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In order to estimate the land surface temperature (LST) from the RTE (eq. 3.6),
it is necessary to remove the influence of the atmosphere. As this is solved during
the atmospheric corrections of thermal imagery, estimation of atmospheric pa-
rameters is further described in Section 3.3. Even if the atmospheric parameters
are taken into account, the RTE cannot be solved if temperature and emissivity
are not known. Let us note that RTE should be applied for every band in case
of instruments with several thermal bands. Thus, one can obtain system of equa-
tions which is undetermined. Several approaches and algorithms were already
developed to overcome this problem as can be found in (Li et al. 2013).

L↓
atm

τεB(Ts)

ρL↓
atm εB(Ts)

τ(1− ε)L↓
atm

τ

L↑
atm

︷ ︸︸ ︷

ε, ρ

Figure 3.2 The radiance incident to the sensor in the thermal region originates mainly
three sources: 1) radiance τεB(Ts) emitted by object with emissivity ε at temperature Ts
attenuated by atmospheric transmission τ ; 2) reflected downwelling atmospheric radiance
τ(1−ε)L↓atm attenuated by atmospheric transmission τ ; 3) upwelling atmospheric radiance
L↑atm emitted by atmosphere itself.

3.2 Overview of Airborne Thermal Instruments

Brightness temperature measurements are contactless. For ground point measure-
ments pyrometers (IR thermometers) are used. To get spatial information there
are two systems of IR thermal imaging:

a) Focal plane arrays (FPA) – mostly thermocameras,
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b) Scanning systems – onboard many satellites and hyperspectral sensors.

Thermal broadband cameras use FPA to record spatial information along both
dimensions of the array, but only in one spectral band. The response function
of thermal broadband cameras usually covers the entire width of one of the at-
mospheric windows. In other words, the full width half maximum (FWHM) is
almost as wide as the atmospheric window will allow. The resolution of thermal
broadband cameras varies from 100 × 100 up to 1024 × 1024 pixels. Table 3.1 pro-
vides a summary of currently used broadband cameras for acquisition of thermal
data.

Instruments based on the Fourier Transform Infrared technology (FT-IR) are
mainly used for laboratory purposes, but there is also an airborne instrument
that takes advantage of this principle. Hyper-Cam LW instrument developed by
Telops, Inc. (Canada), which incorporates FPA of resolution 320 × 256 pixels.
Hyper-Cam LW uses both dimensions of the FPA for spatial information record,
while spectral information is acquired using an interferometer. The spectral res-
olution of Hyper-Cam LW is up to 0.25 cm−1.

In case of the pushbroom scanners, the spatial information is recorded along
one dimension of FPA while other dimension is used for spectral information (see
Section 1.4 for details). Disadvantage of this imaging system is dependence on rel-
ative movement between sensor and target. The overview of currently operational
pushbroom hyperspectral thermal sensors is shown in Table 3.2.

In addition to the mentioned technologies and instruments, there are many
other instruments, which are either not operational or still under development.
There are also other acquisition principles that combine already mentioned FPA
technologies.

3.3 Thermal Data Corrections and Calibrations

Thermal data corrections are essential for performing accurate analyses and es-
timation of land surface parameters. Corrections usually consist of instrument
calibration, compensating for atmospheric attenuation and reflected atmospheric
radiation and geometric corrections. Description of geometric corrections is de-
liberately omitted here as it follows the same principle as geometric correction
of airborne imaging spectroscopy data. Therefore we refer readers to check Sec-
tion 2.3.3 for details. In this section we rather put more emphasis on radiometric
and atmospheric corrections. In general, the instrument acquires thermal data in
raw format, which is usually referred to digital numbers (DN). The main goal of
these corrections is to define the relationship between DN and land surface leav-
ing radiance or surface temperature. There are many approaches and methods of
radiometric correction and data calibration (Lillesand & Kiefer 2000). The choice
of relevant method depends on the data and sensor type, as well as acquisition
purposes.
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Table 3.1 Examples of thermal broadband cameras used on board airplanes and un-
manned aerial vehicles.

Name
Spectral

range
(µm)

FPA
resolution

(pixels)
Manufacturer/Operator

Thermalimager TI 8–14 768 × 500 Termal Imaging Ltd./Scandat
Digi THERM 7.5–14 640 × 480 IGI GmbH/Gispro Sp.o.o.

FLIR SC645 7.8–14 640 × 480
FLIR Systems. Inc./ARGUS
GEO SYSTÉM s.r.o.,
ENKI, o.p.s.

FLIR SC660 7.5–13 640 × 480 FLIR Systems. Inc./
CzechGlobe

FLIR PM695 7.5–13 320 × 240
FLIR Systems. Inc/
ENKI, po.p.s., ČVUT,
Airship.Com

Vario CCAM 7.5–14 640 × 480 Jenoptic Germany/Geodis
Brno, s.r.o.

3.3.1 Radiometric Calibration

The first step is converting DN values into radiance, which is called radiometric
calibration of the instrument. Commonly used approach consists of measuring
two blackbodies at known temperatures. Blackbodies should represent the tem-
perature extremes that can be recorded in the image. It can be assumed, that DN
is linearly dependent on amount of incident energy and thus, following equation
holds:

L = a+ bDN, (3.7)
where L is the incident radiance to the sensor and a, b are unknown constants. Let
us consider the radiance L(TBBC) of a cold blackbody and the radiance L(TBBH)
of a hot blackbody according to the Plank’s law. Then constants a and b can be
calculated using following equations:

a = L(TBBH)DNC − L(TBBC)DNH

DNC − DNH
(3.8)

b = L(TBBC) − L(TBBH)
DNC − DNH

(3.9)

where DNC and DNH are digital numbers measured by sensor viewing cold and
hot body respectively. Again, it is important to emphasize that equation eq. 3.7
depends on a wavelength and thus it is necessary to perform radiometric calibra-
tions for every spectral band.

Radiometric calibration can be performed either in laboratory (in case of
broadband cameras) or directly before data acquisition (in case of hyperspec-
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tral instruments). In general, the second approach is recommended, since it takes
into account an immediate instrument state.

Instruments’ DN can be directly converted to temperature instead of radiance
values. However, the relationship between temperature and radiance is non-linear
and relies on knowledge of the target’s emissivity. Therefore several blackbodies
with different temperature have to be employed for the calibration. Non-linear
relationship between DN and temperature (T ) is expressed as

DN = R

exp
(
B
T

)
− F

, (3.10)

where R, B and F are unknown constants. This kind of calibration is often used
for data acquired by thermal broadband cameras.

3.3.2 Atmospheric Corrections

The atmosphere influences thermal data in three ways. It attenuates the ground-
leaving radiance and it is a source of emitted and reflected radiance reaching
a sensor. Removal of the atmospheric effects from the thermal data is essen-
tial if one wants to retrieve surface temperature or spectral signatures of surface
emissivity. The atmospheric effects are included in the radiative transfer equa-
tion (eq. 3.6) as atmospheric transmittance (τ), upwelling atmospheric radiance
(L↑atm) and downwelling atmosphere radiance (L↓atm). Atmospheric effects can be
corrected for by either modelling the atmosphere using a radiative transfer model
or by applying an in-scene based algorithm.

There is a difference between the corrections applied on the broadband and
hyperspectral thermal data. Therefore we will first discuss corrections applied on
broadband thermal data (tailored to a FLIR broadband camera) and then we will
discuss corrections required for pre-processing of hyperspectral thermal data.

Broadband thermal data
Calibrations of broadband thermal data are simpler than of hyperspectral thermal
data. If the ultimate purpose of the thermal broadband data is an accurate
retrieval of surface temperature, ancillary data describing current atmospheric and
environmental conditions have to be supplied simultaneously to the thermal data
acquisition. The thermal broadband data can be calibrated directly during the
flight, using camera’s internal pre-set of calibration parameters, or after the flight.
Having a concrete broadband camera in mind (e.g. FLIR), for in-flight, as well as
for a post-flight calibration, ancillary measurements of following parameters are
required:

• Object’s emissivity ε

• relative humidity Rh
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• distance from the measured object Dobj (i.e. flight altitude)

• reflected temperature Trefl from the surroundings

• atmospheric/sky temperature Tsky

• temperature of external optics Texo
In the following section we describe how the parameters can be obtained directly
or calculated indirectly from in-situ meteorological measurements. The emissivity
value can be pre-set to a default value equal to 0.98 as it is an average value for
most of vegetated surfaces. Relative humidity, as well as air temperature, can
be measured in-situ, 2 m above ground surface according to standard protocols.
Air temperature measurements approximate the effective temperature of the sur-
roundings, i.e. reflected ambient temperature Trefl. The atmospheric temperature
Tsky has to be calculated from data measured by infra-red radiometer (pyrgeome-
ter). This device measures emitted sky and ground radiation in infra-red domain
(approx. 4.5–50 µm). The atmospheric temperature Tsky is estimated as follows:

Tsky = 4

√
Rldown + εσ (Trad)4

εσ
, (3.11)

where Rldown represents measured longwave radiation between sky and pyrgeome-
ter, Trad is the radiometer temperature and σ is Stefan-Boltzman constant. Both
emissivity values are approximated by the black body values, i.e. ε = 1.

The last of the parameters, the temperature of external optics (Texo) can be set
to the same value as measured air temperature on the ground, if the flight altitude
does not exceed 300 m. When flying higher, one takes the ambient temperature
around the sensor.

Once all the parameters are supplied to the camera, or to the post-processing
software, the image calibration is easy and straightforward. It is important to
realize that many of the above discussed parameters can vary significantly in time
and space. Therefore the most optimal case is to measure them continuously
during the flight and at several locations dispersed equally around the test area.

Hyperspectral Thermal Data
The atmospheric corrections are usually based on radiative transfer models of the
atmosphere. Similarly as for hyperspectral data in the reflective domain the most
widely used one is MODTRAN (Berk et al. 2006). MODTRAN simulates atmo-
spheric transmittance, downwelling and upwelling atmospheric radiance based on
input parameters such as vertical profiles of air humidity and temperature, CO2
concentration, the choice of model atmosphere (if measured profiles are not avail-
able), aerosol model or measurements and many others. Some of the model input
parameters can be obtained through in-situ measurements. For example sun-
photometer measures atmospheric water vapour and aerosols content, radiosondes
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are used to measure vertical temperature and water vapour profile of atmosphere,
and radiometers for land-leaving radiance. When these measurements are not
available, then corresponding information can be obtained from local meteorolog-
ical stations and/or standard atmosphere models. Other sources of supplementary
data can be either hyperspectral airborne image or satellite-based products ac-
quired close to the thermal data overflight.

An example of a software toolbox that allows complex solution for atmo-
spheric correction of data in the thermal, as well as in the reflective domain, is
ATCOR (Richter & Schläpfer 2002). ATCOR uses look-up-tables generated by
MODTRAN and takes into account terrain topography and sensor parameters.
In addition it offers basic temperature-emissivity separation algorithms.

In case of thermal hyperspectral data, various algorithms for estimating atmo-
spheric effects based just on the hyperspectral cube itself were developed. Usually
it is applied to one of the following: In-Scene Atmospheric Corrections (ISAC)
introduced by (Young et al. 2002) and Autonomous Atmospheric Compensation
(AAC) introduced by (Gu et al. 2000). The advantage of using one of these
algorithms is that no supporting data are necessary.

Vicarious Calibration
Vicarious calibration is a specific calibration technique where in-situ spectral sig-
natures of natural or artificial surfaces are used to calibrate the image data. This
calibration technique performs both radiometric calibration and atmospheric cor-
rection at the same time. More specifically, DN values of an airborne thermal
image are calibrated to the values of in-situ measured ground-leaving radiance.
In-situ spectra can be measured for example with a portable FTIR spectrometer
(Model 102, D&P Instruments, US). Field spectra must be collected simultane-
ously to the airborne image acquisition. Selected surfaces must be large enough
to be identified on the image and spectrally homogenous. Vicarious calibration is
more suitable for hyperspectral than for broadband thermal data.

Recommended Reading

Kuenzer, C. & Dech, S. 2013. Thermal Infrared Remote Sensing: Sensors, Methods,
Applications. Remote Sensing and Digital Image Processing 17.

Quattrochi, D.A. & Goel, N.S. 1995. Spatial and Temporal Scaling of Infrared Remote
Sensing Data. Remote Sensing Reviews 12: 256–286.
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LASER SCANNING
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Laser scanning is a remote and proximal sensing technology that allows precise
determination of a 3D structure of objects of interest. Laser scanners are active
systems that emit light pulses and record reflected energy that comes back (Fig-
ure 4.1). The technology itself is well known since 1960’s. However, advances
in the fields of electronics and informatics very much stimulated the rapid devel-
opment of laser scanning in the last two decades. The possibility of processing
large volume data has effectively opened up laser scanning to a multitude of ap-
plications such as topographic, environmental, industrial and cultural heritage 3D
mapping.

Laser scanners can be installed on moving airborne platforms (aerial laser
scanning – ALS), as well as on fixed ground-based platforms (terrestrial laser
scanning – TLS). In the following sections we will briefly introduce basic principles
of laser scanning, some commercially available ALS systems, basic post-processing
steps applied on point cloud data and mention the most common ultimate product
of ALS – digital elevation models (DEM).
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Emitted)pulse

Reflected)pulse

Ground
object

Laser

t1

t2

Range)RAB)=)v)(t2)-)t1)/2)
A B

Figure 4.1 Basic principle of laser ranging (measurement of distances) using a time-of-
flight method. A distance between a scanner A and an object B (range RAB) is calculated
from a difference between time when a light pulse is being emitted (t1) and time when
a reflected pulse is recorded back (t2) and the speed of light (ν).

4.1 Aerial Laser Scanning

4.1.1 Principle of ALS

A typical aerial laser scanning system consists of following main components:

1. A basic laser ranging unit. It consists of a laser, transmitting and receiving
optics, a receiver with a detector and digitizing unit to capture the received
signal, and a time counter to measure elapsed time between the emitted
and returned signal. The ranging unit measures a slant distance between
the scanner and the ground as illustrated in Figure 4.1.

2. An optical scanning mechanism. It determines a ground pattern of measured
points. A typical example of the scanning mechanism is an oscillating mirror,
which together with an angular encoder, directs a stream of light pulses at
known angles at high speed along a line in the across-track direction relative
to the flight path. The scanning mechanism allows making successive point
measurements along one line (a profile). The forward motion of an aircraft
allows forming series of profiles and scanning the entire flight swath of the
terrain.

3. A control and data recording unit. It is normally a computer-based device
that allows an operator to control scanning settings and process of data
recording.

4. An IMU/GNSS unit. Together these constantly measure precise position of
the aircraft and orientation of the laser scanner – six parameters obtained
at the same time.
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5. An imaging device. Often, a digital frame camera (60–80 megapixels) or
imaging scanner is integrated with the laser scanner to supply visual infor-
mation together with 3D point cloud data.

Most of the up-to-date ALS systems have the capability of recording multiple
discrete returns from one emitted pulse and the intensity of returned echoes.
Nowadays, all principal manufacturers of ALS systems also provide the capability
of full waveform digitization, i.e. recording the complete return (Figure 4.2).
This feature is particularly useful for vegetation mapping as it allows mapping of
multilevel canopies or forest canopy structure (Mallet & Bretar, 2009).

Besides the measurements of range the intensity of the returned pulse is also
recorded. This information is dependent on the emitted wavelength, on the re-
flectivity of a surface, on the scanning angle and atmospheric conditions. Many
systems use wavelengths from the near infra-red region, as this region is less af-
fected by atmospheric absorption and many natural surfaces are highly reflective
in that region. However, the intensity information has to be interpreted with
care. Intensity normalization is required to compensate for different scan angles
and variable distances between the scanner and ground objects (i.e. signal re-
ceived from more distant objects will be weaker than from closer objects with the
same reflectance properties) (Jutzi & Gross, 2007). Intensity values appear to be
of a limited interest to the users, who focus on positional and elevation data only,
but it can be used for classification purposes. Recently, a new multi-wavelength
canopy LiDAR system has been developed and successfully tested for vegetation
monitoring (Bo et al., 2011; Wei et al., 2012). It measures in four wavelengths
(556 nm, 670 nm, 700 nm and 780 nm). The wavelengths were chosen according
to nitrogen stresses that induce changes in the optical properties and spectral
reflectance of leaves. In addition to assessing plant stress, the information can be
particularly useful in separation between different phenological developments of
the crops.

4.1.2 Scanning Parameters and Properties of ALS Systems

There are several parameters and properties of the ALS system that a user/operator
should be aware of in order to acquire data of desired resolution and quality. Some
very important parameters of ALS systems are pulse repetition frequency (PRF)
and scan rate. Both parameters, together with flight altitude and field of view
(FOV, i.e. the angular width of the scan swath), determine the actual density of
points that are being measured on the ground. The first parameter, PRF is a rate
of successive pulses. With increasing PRF, the mean point density on the ground
also increases. In earlier types of airborne laser scanners, only one pulse at time
could be in air, i.e. the next pulse could be fired only when the previous one
returned. This limitation has been overcome by using the technique of “multiple
pulses in the air”, which was recently adopted by all manufacturers. With the
introduction of this technique, maximum PRF increased to 200 kHz and greater,
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Figure 4.2 Full waveform laser scanning system provides complete digitization of returned
signal.

though the actual PRF will still depend on the flying altitude. The second param-
eter, scan rate is the rate of successive profiles measured on ground. It is inversely
proportional to the scanner’s FOV. Greater the scan rates can also be achieved
using dual streams of pulses fired from twin scanners (e.g. Riegl system BP-560,
which utilizes two LMS-Q560 scanners, or Peagasus system from Optech).

The scan pattern on ground depends on how the beam sweeps. This depends of
scan rate, as well as on the type of optical scanning mechanism. The saw-toothed
pattern or sinusoidal pattern is formed using a bi-directional oscillating mirror
(Optech or Leica scanners). The equally-spaced grid scan pattern is produced by
rotating uni-directional polygon mirror (Riegl scanners). The grid scan pattern
with different point spacing across and along track is formed using a glass fiber
scanner. Yet another scanning pattern, which is used in the TopEye systems,
is the so-called Palmer scan. It uses of nutating mirrors to produce overlapping
elliptical scans.

Another important property of a laser scanner is the footprint of the laser
beam on the ground. It is a circular or elliptical area and its diameter depends
on laser beam divergence and flight altitude. Typical values of beam divergence
are between 0.1 and 1.0 mrad. For example, for the beam divergence 0.25 mrad
and flight altitude of 1 km the diameter of the footprint is 29 cm. It will increase
with increasing flight altitude.
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4.1.3 The Scanning Accuracy

All measured ALS data have certain accuracy limitations. The overall accuracy
of ALS data lies in the range of 8–20 cm for X and Y coordinates and 8–50 cm for
elevation depending mainly on the flight altitude. There are three main sources
of errors that influence position accuracy of final laser points. These are errors
originating from: i) laser measurements, ii) IMU/GNSS measurements and iii) in-
strument misalignment. First, distances are measured with an error of about
0.02 m and scan angles are measured with an error of 0.001–0.002 gon (it trans-
lates in a positional error of 1.6–3.2 cm at nadir at the flight altitude of 1 km).
Second, the largest contribution to the overall error budget originates from the
IMU/GNSS measurements. The errors in scanner’s platform position eX, eY are
about 8–50 cm and eZ is between 8 and 20 cm. Measurements errors in the IMU
recorded pitch and roll can be around 5 mgon (it translates in a positional error
of 8 cm at the flight altitude of 1 km) and 15 mgon in heading. Third, boresight
misalignment (i.e. positional and angular shifts between the IMU/GNSS unit and
the laser scanner) and position of GNSS antenna (i.e. vector between a GNSS
antenna and the reference point of the IMU/GNSS unit) cause errors in final ALS
data that are less than 1 cm. Other possible sources of error are beam divergence,
terrain and object characteristics, time synchronization, coordinate system trans-
formations, atmospheric refraction and sensor mounting rigidity. All these sum
up to a maximum error contribution of 0–5 cm.

4.2 Overview of Aerial Laser Scanners

Topographic ALS systems can be either multipurpose instruments or designed for
rather specific applications. Their applicability is determined by the combination
of several basic operational parameters of the ALS, such as maximum operational
altitude, maximum scanning rate, etc. For example, corridor mapping and vari-
ous engineering applications require lower-altitude data with high point densities
(several tens of points per square meter) and sub-decimeter accuracies. There is
also a demand for data covering large areas that have to be acquired from higher
flight altitudes. These kind of data facilitate digital terrain mapping (DTM) at
regional and national levels.

Currently, a multitude of commercial and custom-built aerial laser systems
is available. The market is, however, dominated by three principal commercial
suppliers; Leica Geosystems (Germany), Optech (USA) and Riegl (Austria). In
Table 4.1 we summarize the basic parameters of a few selected systems that are
currently on the market.

Leica Geosystems (group Hexogen) entered the market in 2001 and currently
offers the following systems: ALS70 CM, which is designed for city and corridor
mapping, ALS70 HP, which is used for general-purpose mapping and ALS70 HA,
which is designed for wide area mapping.
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The Optech company has built its series of ALTM (Airborne Laser Terrain
Mapper). The first model ALTM 1020 was released in 1993. The current ALTM
systems are Pegasus, Orion and Galaxy. Pegasus allows data acquisition at higher
PRF, while Orion facilitates low to mid-altitude engineering surveys. In 2014, the
Galaxy model was released and it represents the next generation of ALS for a wide
range of applications ranging from wide-area mapping to corridor surveys.

Riegl has produced ALS systems since 2003. The model LMS-Q680i is de-
signed for general-purposes, LMS-Q780 is designed for high altitude wide area
mapping and LMS-Q1560 is fully integrated ALS for ultra wide area mapping.

Some companies provide custom-built topographic laser systems such as the
FLI-MAP system from Furgo Geospatial or the TopEye system from Norwegian
Blom (Petrie, 2011).

A special kind of ALS is airborne laser bathymetry, which is used for surveying
shallow coastal and inland waters (Mandlburger et al., 2011). The basic differ-
ence compared to the above listed topographic ALS systems is that bathymetric
laser scanners employ two rangefinders operating at different wavelengths. One
operates in the NIR region, where an emitted pulse is reflected back from the
water surface. Another one operates in the green region, where an emitted pulse
passes through the water column and is reflected back by the bottom of a water
body. Differencing the two measurements allows monitoring of water depth to
a maximum depth of about 25 m.

In the Czech Republic, as far as we know, there are currently only two to-
pographic airborne laser scanners being operated. In 2014, Argus Geo Systém
operated Leica’s ALS 50-II and Riegl’s LMSQ-680i. Another system from Riegl
(LMSQ-780i) has been recently purchased by the AdMaS Centre, Brno University
of Technology.

4.3 Terrestrial Laser Scanning

We are going to introduce terrestrial laser scanning (TLS) by comparing it to aerial
laser scanning. In principle, TLS differs from ALS in that the TLS scanner is not
moving during the data acquisition process. During ALS data acquisition a laser
beam is emitted and reflected across the direction of the flight line. However,
TLS data are being acquired in the whole hemisphere around the instrument.
Therefore a slant distance and the two angles in vertical and horizontal planes are
measured simultaneously in order to determine the point coordinates. Terrestrial
laser scanners record discrete pulses and do not use full wave digitization except
for a few scanners produced by Riegl.

From the point of view of precision and maximum scanning distance, terrestrial
laser scanners can be divided into three groups: short-, medium- and long-range
scanners. The short-range scanners acquire highly precise data with accuracy of
1 mm typically with maximum distances from 50 to 120 m. They often use a phase
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Table 4.1 Overview of basic parameters of selected ALS systems produced by three
principal suppliers that are currently available on the market. (Abbreviations: PRF —
pulse repetition frequency, FOV — field of view)

Model Max. altitude
(m)

Max. PRF
(point/sec)

Max. FOV
(°)

Max. scan
rate (Hz)

Leica Geosystems (http://www.leica-geosystems.com/en/Airborne-LIDAR_86814.htm)

ALS70 CM 1,600 500,000 75 200
ALS70 HP 3,500 500,000 75 200
ALS70 HA 5,000 250,000 75 100

Optech (http://www.optech.com/index.php/products/airborne-survey/lidar-systems/)

Pegasus HD500 2,500 500,000 75 140
Orion C300 1,100 300,000 50 90
Galaxy 4,700 550,000 60 100

Riegl (http://www.riegl.com/nc/products/airborne-scanning/)

LMS-Q680i 1,650 400,000 60 200
LMS-Q780i 3,050 400,000 60 200
LMS-Q1560 4,700 800,000 60 400

method to measure distances. In the phase method a continuous beam of light is
being emitted instead of a pulse. The distance is derived by comparing the emitted
and received versions of the sinusoidal wave pattern and measuring the phase
difference between them. The most prominent producers of this type of scanner
are two German companies, Zoller+Fröhlich and Faro, and Basis Software Inc.
from the US. Only a single company -– Callidus from Germany -– has adopted the
time-of-flight measurement method (Figure 4.1) for its short-range scanners. All
the medium- and long- range scanners use the time-of-flight method (Figure 4.1)
for distance measurements. Medium-range scanners can measure distances over
medium ranges, typically between 150 and 350 m, whereas long-range scanners
can measure well beyond 500 m (1–4 km). Typical accuracy achieved by these
systems varies between 5 and 20 mm depending on the maximum measured range.
Principal suppliers of medium-range scanners are Leica, Trimble and Topcon.
Principal suppliers of long-range scanners are Reigl and Optech.

4.4 Processing of Aerial Laser Scanning Data

Typical steps that are required in order to process ALS data are as follows: 1) cal-
ibration of the system, 2) strip adjustment, 3) point filtering and classification,
and 4) specific post-processing techniques, depending on the application.

http://www.leica-geosystems.com/en/Airborne-LIDAR_86814.htm
http://www.optech.com/index.php/products/airborne-survey/lidar-systems/
http://www.riegl.com/nc/products/airborne-scanning/
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4.4.1 Calibration

In order to determine the accurate position of a point on the earth’s surface it
is necessary to know the exact position and orientation of the laser scanner. For
this purpose the IMU/GNSS unit continuously records the actual position and
orientation of the airborne platform. Typically, laser scanning data are acquired
with higher frequencies than position (≈ 10 Hz) and orientation (≈ 200 Hz) data.
Therefore the IMU/GNSS data has to be interpolated and synchronized with
corresponding ALS data.

A prerequisite is the knowledge of the spatial relationships between the laser
scanner and the IMU/GNSS components. These are: i) a vector from the IMU
reference point to the phase center of GNSS antenna and ii) angular rotation
between axes of the coordinate system of the scanner and IMU (Figure 4.3).
The first one is measured geodetically, the second one is determined during so-
called boresight calibration flight. The calibration flight is usually done at the
beginning of the data acquisition season or any time when either the scanner or
IMU/GNSS unit has been moved.

GNSS antenna

la1

la2

Rp

RRimu

P(X,Y,Z)

Xsc

Ysc

Zsc

Xg

Yg

Zg

Ximu

Yimu

Zimu

Figure 4.3 Illustration of geometrical relationships between coordinate systems of the IMU
unit (Ximu, Yimu, Zimu), a laser scanner (Xsc, Ysc, Zsc), known geodetic system (Xg, Yg,
Zg) and a laser point P with unknown coordinates X,Y, Z. Further abbreviations are la1
– lever arm from GNSS antenna phase center to the origin of IMU coordinate system, la2
– lever arm from the origin of IMU coordinate system to the origin of scanner coordinate
system, Rimu – spatial vector between geodetic system and IMU, Rp – spatial vector
between geodetic system and the determined point P , R – is distance between scanner
and point P .
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4.4.2 Strip Adjustment

After calculating the spatial position of points within a single strip (i.e. data
acquisition along a more or less straight flight line), the adjustment of adjacent
flight strips follows. Typically, the overlap between adjacent flight strips is about
20 % to ensure that entire surface area is covered. Due to residual systematic
errors of the laser scanner, the position and height of a single object that has
been identified on both adjacent strips will not be absolutely identical. Therefore
the flight strips have to be adjusted in order to append them into one point cloud.
Usually, software for processing of ALS data allows automatic identification of
common objects on two adjacent strips. It calculates a transformation between
the two strips using a least squares approach. Always one strip is selected as
a base and the others are appended based on the calculated transformation. This
is known as relative adjustment of ALS strips. A minimum of three ground control
points are then required to transform the entire point cloud into its absolute
position in a global coordinate system.

4.4.3 Filtering and Classification

The most common use of ALS data is terrain mapping and therefore classification
of ground return points is of the utmost importance. The process of classification
of points as ground returns is referred as ground filtering (Figure 4.4). There are
several ground filtering techniques described in literature (Sithole & Vosselman,
2004). However, here we will only mention two common approaches and refer to
published papers for more details. The first group of filter algorithms is based
on the concept of mathematical morphology. It combines two basic operations
(opening and closing) on a point cloud to determine the upper and lower surface
within a profile (Vosselman, 2000). The second approach works with a progressive
densification of the set of ground points. The very first ground points are chosen as
local minima in a certain sparse grid. The next points are added to the ground set
if they meet specific criteria such as height difference or angular offsets (Axelsson,
2000).

4.4.4 Application Specific Processing Techniques

All further data processing steps are very much application specific. The most
common fields where ALS data are used include: 1) digital terrain models (see
Section 4.5 for further details), 2) building extraction, 3) forestry applications
(see Chapter 9), 4) engineering applications, 5) cultural heritage applications,
or 6) mobile mapping. Other processing techniques include, for example, object
classification, vectorization, rendering, colouring, and converting point clouds into
a raster format. For example, Figure 4.5 illustrates classification of objects in
an urban environment.
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Figure 4.4 Illustration of the ground filtering process. Ground points are presented in
violet, the other unclassified points are presented in orange.

Figure 4.5 Example of a classification of the point cloud into five classes: roofs (red
points), trees and high vegetation (light green), low vegetation (dark green), power line
(yellow) and bare ground surface (orange).
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4.5 Digital Elevation Model and Its Accuracy

4.5.1 Definition of the Terms

First, it is important to clarify differences between digital elevation, terrain and
surface models as there seems to be some confusion in the literature how these
terms are used in different fields of application. Here, we define digital elevation
model (DEM) as a generic term for any kind of digital representation of elevation
data. We use digital terrain model (DTM) for bare ground only, free of vegetation,
buildings, etc. In contrast, a digital surface model (DSM) is derived from first
reflective surfaces including all natural terrain features, vegetation cover and all
man-made objects.

4.5.2 DEMs in the Czech Republic

Until recently, ALS data in the Czech Republic were provided by the private
sector. Nevertheless, aerial laser scanning at the national level was carried out
within the framework of the cooperative project of the Czech Office for Surveying,
Mapping and Cadaster (ČÚZK). The Ministry of Defense and the Ministry of
Agriculture of the Czech Republic engaged in a project to create a new altimetry
of the Czech Republic between 2009 and 2013. The output of the project was the
creation of new digital terrain models of the 4th and 5th generation (DTM 4G,
DTM 5G) and also a digital surface model of the 1st generation (DSM 1G).

DTM 4G is provided in the form of heights of discrete points in a regular grid
of 5×5 m. Its declared accuracy is the mean elevation error of 0.3 m in open areas
and 1 m in forested areas. DTM 5G is distributed in the form of a triangulated
irregular network (TIN) of selected elevation points. Its declared accuracy is the
mean elevation error of 0.18 m in the terrain without vegetation and 0.3 m in
forested areas. Currently, DTM 5G covers only a part of the Czech Republic and
it is expected that the full coverage will be finished by the end of 2015. DSM 1G
is distributed similarly like DTM 5G in the form of TIN. Its mean elevation error
is 0.4 m for regular-shape objects (e.g. buildings) and it is 0.7 m for objects with
irregular boundaries (e.g vegetation cover). The DSM 1G for the whole republic
shall be also finished in 2015.

4.5.3 Accuracy Assessment of DEM

ČÚZK is continuously evaluating the accuracy of the new DEM products. The de-
clared accuracy of all those new products is much higher when compared to pre-
vious elevation products (Brázdil, 2012). However, in the forested area, the accu-
racy can be lower than the declared one due to many factors influencing the signal
penetration through forest canopies. A DEM serves as an important geospatial
resource for forest planning and management; therefore, it is of high importance
to characterize well accuracies of the new DEM products in forest environments.



74 4. Aerial and Terrestrial Laser Scanning

For this reason an independent verification of the accuracy of the new DTM 5G
model and contour lines from ZABAGED (topographic model of CR produced by
ČÚZK) in forested areas was performed by Mendel University in Brno (Cibulka
& Mikita, 2011; Mikita et al., 2013a). For the purpose of this comparison, Eu-
ropean beech and Norway spruce dominant forests were selected and tachymetric
measurements were performed there in order to obtain precise coordinates of ref-
erence points. Generally, a probability that the reference points can be directly
compared with the DTM 5G points is very low. Therefore, an interpolating tech-
nique has to be employed in order to derive matching pairs of points that can be
compared. In this study, several interpolation techniques were evaluated, namely
the methods of weighted inverse distance, minimum curvature, Delaunay triangu-
lation, kriging, natural neighbor and topo-to-raster, as they can have some impact
on the accuracy assessment.

Root mean square error (RMSE) calculated between the reference points and
interpolated DTM 5G reached values between 0.27 and 0.43 m depending on the
interpolation method. The method of weighted inverse distance produced the
highest RMSE in both stands (0.43 m for the beech stand and 0.35 m for the spruce
stand). Simpler interpolation techniques, such as nearest neighbor and triangu-
lation, produced the lowest RMSE at both stands. The systematic component of
the RMSE yielded the value of 0.16 m irrespective of the interpolation method.
The positive sign of the systematic error indicates that the terrain derived from
the ALS data (DTM 5G) is situated above the real terrain. Most likely, this is
caused by the inability of the last laser pulses to penetrate the herbaceous cover,
reach the ground and return to the sensor. Comparison with the ZABAGED
contour lines yielded much higher values of RMSE (1.6 m for the beech stand and
1.0 m for the spruce stand). However, in highly heterogeneous areas, the maximal
deviations can reach the values of up to 7 m (Cibulka & Mikita, 2011).

The results of this independent evaluation confirmed that the ALS-based
DTM 5G reaches reasonable accuracies in the forested area. If the systematic
error of about 0.16 m could be removed, the results would be fully in accordance
with the declared accuracy by ČÚZK for areas with dense vegetation. A possible
solution for partly overcoming this problem would be to acquire ALS data during
the leaf-off season, which would improve the accuracy in broad-leaf forests.

Recommended Reading

Shan, J. & Toth, C.K. 2009. Topographic laser ranging and scanning: principles and
processing. CRC Press. Taylor & Francis Group.

Petrie, G. 2011. Airborne topographic laser scanners. GEO Informatics 14: 34—44.
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5.1 Introduction

Water is an essential substance on the Earth. It is a part of many natural and
human induced processes. Many of these processes are closely related to some
water quality requirements. System for monitoring of water quality vary accord-
ing to the type of a water body. One of the most serious issues related to water
quality is phytoplankton (cyanobacteria and algae) water blooms (Chorus 2001).
Massive water blooms occur in many freshwater lakes, slowly running rivers and
shallow coastal water due to anthropogenic eutrophication (Paerl & Paul 2012).
Recent studies indicate that the occurrence of water blooms has been increasing
(Kahru et al. 2007; Duan et al. 2009). Drinking water reservoirs, recreational
water bodies and fish ponds are sensitive to phytoplankton development, compo-
sition and concentrations. Massive outbreaks cause oxygen depletion when the
phytoplankton biomass decays. Additionally, cyanobacteria may produce toxic
compounds (cyanotoxins) that can have negative impacts on human health (Rao
et al. 2002). The toxins of cyanobacteria are a structurally, functionally and
phylogenetically diverse group of compounds with different toxicological charac-

75
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teristics. The most widely spread cyanobacterial toxins found in water blooms
of fresh and brackish waters are hepatotoxic cyclic oligopeptides (microcystins
and nodularins). For example microcystins have been isolated from planktonic,
benthic and soil cyanobacteria species such as Anabaena, Microcystis, Oscillato-
ria (Planktothrix), Nostoc, Anabaenopis, Hapalosiphon (Chorus 2001). The wide
spectrum of toxic compounds produced by cyanobacteria is the reason, why a lot
of research effort is nowadays focused on mapping of cyanobacteria blooms and
the development of early warning systems.

The standard method of phytoplankton quantification is based on laboratory
microscopic analyses of water samples that are complemented by spectroscopic
assessment of chlorophyll concentrations. However, this method is limited to
a certain sampling area, depth horizon and moment in time. More advanced
methods of phytoplankton quantification should be able to capture spatial and
temporal variability of phytoplankton in a water body. The advanced methods of
phytoplankton quantification include:

• Optical in-situ methods (in-situ Flow Cytometry, Analytical Flow Cytome-
try etc. (Goddard et al. 2005)

• In-situ and on line fluorescence quantification of dominant phytoplankton
pigments (Gregor & Maršálek 2004; Izydorczyk et al. 2005; Gregor et al.
2005; Gregor et al. 2007)

• Airborne- and satellite-based optical remote sensing (RS)

The RS mapping of algae and cyanobacteria is usually based on quantitative esti-
mation of pigments concentrations: chlorophyll a (Ca) (Vos et al. 2003; Gitelson
et al. 2007) and phycocyanin (Pc) (Randolph et al. 2008). Empirical RS methods
usually yield better results for areas with higher Ca concentration (Cheng et al.
2013), because low Ca concentrations are typically masked by other absorbing
constituents (e.g., dissolved organic matter, suspended inorganic particles). In
order to overcome the limitations of the empirical methods, semi-analytical (Gi-
telson et al. 2007; Le et al. 2009) and physically based (Vos et al. 2003) methods
have been developed to estimate concentrations of Ca. These methods describe
more precisely influences of other optically active water constituents.

The selection of an appropriate method and of the pre-processing done on the
RS data has to be adjusted depending on what type of water body being observed.
Typically, RS distinguishes between two types of water bodies: i) open ocean and
ii) inland waters and shallow costal water. In case of the open ocean, the water
leaving radiance recorded by a RS instrument is affected only by the absorption
of water and by the absorbing and backscattering properties of phytoplankton. In
case of inland waters there are additional factors which have impact on the radi-
ance recorded by RS sensors such as colored dissolved organic matter, suspended
inorganic particles, organic detritus and the scattering properties of the bottom
in case of very shallow waters.
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Besides monitoring of phytoplankton, remote sensing can be used to assess
other properties of water ecosystems. For example, laser scanning can be used
for bathymetry of shallow waters (Fernandez-Diaz et al. 2014) or for mapping
sediments disposal (Montreuil et al. 2014). Hyperspectral data can be used for
depth estimation in shallow waters (Ma et al. 2014), suspended inorganic particles
(Giardino et al. 2014) or dissolved organic matter (Zhu et al. 2013). All these
parameters are highly relevant for water quality monitoring, however the objective
of this chapter is to demonstrate possibilities of airborne imaging spectroscopy to
assess Ca and Pc concentrations in Brno reservoir.

5.2 Material and Methods

5.2.1 Study Area

Brno reservoir (49.2414756 N, 16.5064217 E) was our model water body. It cov-
ers area of a 256 ha, its retention volume is a 7.6 mil. m3 and maximum depth
a 23 m. Controlling of flood events and tourist recreation were the main reasons
for building the dam. The reservoir has been known for its massive cyanobacteria
blooms, especially in period 2000–2008, where scums of the biomass occurred ev-
ery summer. That is why several countermeasures have been successfully applied
since then. Because of very intensive recreation activities here, the water quality
indicators (Ca, Pc, microscopic composition of phytoplankton, dissolved oxygen,
transparency, temperature stratification and conductivity) are being measured by
water sampling in a two-week intervals during the vegetation season.

5.2.2 Field Measurements of Water Quality

Field data about water quality were measured from a boat at 10 sample points
using transect across the reservoir (hereafter called open water) and at two sites
where higher concentrations of algae and cyanobacteria has been observed (here-
after called Zouvalka and dam) on 8th Spetember 2013. The measurements are
representative for the top layer of water (0–30 cm), as this is the layer that mostly
influences the signal recorded by RS instruments. At each sample point a concen-
tration of Ca and Pc were measured by the YSI probe (YSI Inc., USA). The YSI
6600 V2 probe is a multi-parameter, water quality measurement and data collec-
tion system. It has chlorophyll and phycocyanin sensors to determine Ca and Pc
concentration based on measurement of light-induced chlorophyll fluorescence at
680 nm and 650–660 nm, respectively.

The YSI probe was equipped with additional sensors to determine conduc-
tivity, dissolved oxygen, turbidity and temperature. Furthermore, the propor-
tion of individual species such as green algae, blue-green algae/cyanobacteria,
diatoms/dinoflagellates and cryptophytes were determined using a FluoroProbe
(bbe Moldaenke, Germany). The FluroProbe emits light at 370 nm, 470 nm,
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525 nm, 570 nm and 610 nm to stimulate chlorophyll fluorescence. Fluorescence
excitation spectra have specific shapes for functionally similar groups of phyto-
plankton as these groups contain similar proportions of chlorophyll.

5.2.3 Spectral Data

We collected and analyzed three types of water spectral data, each acquired under
different environment conditions. We measured water spectra in the laboratory,
in-situ and from an airborne platform.

First, spectral signatures of algae and cyanobacteria water samples with differ-
ent Ca concentrations were measured in a laboratory using ASD FieldSpec spec-
trometer (ASD Inc., USA). Two sets of water samples with increasing biomass
concentration (number of cells per ml of water) Ca, one for algae and the second
one for cyanobacteria, were prepared in the laboratory. Chlorophyll concentra-
tion is a function of the biomass. Spectra were measured in the spectral range
400–2500 nm with a spectral sampling step of 1 nm. The constant viewing geom-
etry and illumination conditions were ensured by placing a Petri dish with the
water sample on the ASD Turntable (ASD Inc., USA). A white reference plate
(Spectralonr) was measured before each sample to calibrate for reflectance.

Second, water spectral properties were measured in-situ from a boat simultane-
ously with the water sampling (Figure 5.1). The simultaneous measurements are
important because spatial distribution of cyanobacteria and algae change rapidly
in time mainly because of water surface movement. Field spectra were collected
with ASD FieldSpec spectrometer (ASD Inc., USA) in the spectral range of 350–
1200 nm with spectral sampling step of 1 nm. The measurements were taken with
a bare optical fibre (FOV 25°) perpendicularly to the water surface from the dis-
tance of 30 cm. At each sampling point six spectra were collected, each as a result
of 25 repeated measurements. Spatial location was recorded by a GPS. A white
reference plate (Spectralonr) was measured before each sample to calibrate for
reflectance. Field spectra were parabolically corrected to compensate for spectral
intensity shifts between the visible and infrared part of spectrum (Beal & Eamon
2009). Corrected spectra were resampled to match the broader spectral resolution
of the airborne AISA image data.

Third, an airborne hyperspectral image of the Brno reservoir area was acquired
with the pushbroom scanner AISA Eagle (Specim Ltd., Finland) on 8th Septem-
ber 2013. The image was acquired in the range of 400–990 nm with the spectral
sampling step of 3 nm. The spatial resolution was 3.5 m. The raw data were
radiometrically, geometrically and atmospherically corrected (see details in Chap-
ter2). The AISA image contained noise because of the combination of generally
low reflectance signal over water bodies and high spectral resolution. Therefore
Savitzky-Golay filter (window size of nine bands and 2nd order polynomial) was
applied to smooth the noise (Savitzky & Golay 1964).

Despite the fact that the flight-line was acquired in SE-NW direction and
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close to the solar noon, some sunglint effects were present due to surface wind
roughening during the acquisition. The sunglint removal was based on a method
proposed by Hedley et al. (2005). The method estimates the additional sunglint
signal in the NIR band where, in theory, the signal should be equal to zero.
After the sunglint removal the image spectra were compared with field spectral
measurements and exhibited better fit to in-situ spectra, especially in the near
infrared part of spectrum. The results are not presented in this study.

Figure 5.1 Spectral measurement at the dam site with height concentration of algae and
cyanobacteria.

5.2.4 Mapping of Phytoplankton Distribution

The spatial distribution of phytoplankton (algae and cyanobacteria) in the Brno
reservoir was approximated by mapping Ca and Pc concentrations using airborne
hyperspectral data. We used a statistical approach, when relationships between
field measured concentrations and associated field spectra were established from
data measured and acquired simultaneously on 8th September 2013. We tested
two simple spectral indices that have been previously published as suitable for Ca

or Pc estimation. First, a simple ratio index R700/R675, proposed by Vinciková et
al. (2013), is related to Ca concentration. Second, a simple ratio index R700/R600
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was experimentally designed to predict Pc concentration in samples with different
Ca/Pc ratios mixed in a laboratory (Mishra et al. 2009). The established linear
relationships between the two spectral indices and Ca and Pc concentrations were
applied to the whole water reservoir area of the AISA image.

5.3 Results and Discussion

5.3.1 Spectral Differences of Water Samples with Different
Cyanobacteria and Algae Concentration Measured in
Laboratory

Laboratory spectral measurements of algae and cyanobacteria samples with in-
creasing Ca concentration are presented at Figure 5.2. These show that different
Ca concentrations produce spectral signals that are distinct from each other, espe-
cially in the chlorophyll absorption bands located at 460 and 680 nm. These two
absorption regions are common for both algae and cyanobacteria but cyanobac-
teria samples with low Ca concentration absorbed more incident light than algae
samples with similar Ca concentration. Cyanobacteria also reflected more radi-
ance in the near infra-red region compared to the algae samples. Contrary to algae
cyanobacteria also exhibit characteristic pigment absorptions in wavelengths dif-
ferent from chlorophyll e.g. at 620 nm (indicated by a red line at Figure 5.2b).
The absorption maxima of phycocyanin is the most frequently used feature to
differentiate between cyanobacteria and algae (Jupp et al. 1994; Srivastava et al.
2013).
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Figure 5.2 Laboratory measured spectral signatures of algae (a) and cyanobacteria (b) so-
lutions with increasing chlorophyll-a concentration.
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5.3.2 Spatial Distribution of Algae/Cyanobacteria in the Brno
Reservoir

The two evaluated spectral indices, R700/R675 sensitive to Ca and R700/R600 sen-
sitive to Pc, exhibited a linear relationship with the field measured concentrations
(Figure 5.3). The achieved accuracy (R2 = 0.90) of the Ca sensitive index corre-
sponded well with results presented by Vinciková et al. (2013). The model based
on the Pc-sensitive index explained less variability (R2 = 0.73) than the Ca model
(cf. Figure 5.3a and b). The accuracy of the Pc model was lower than that of
Mishra et al. (2009). This discrepancy could be related to other factors (water
turbidity, dissolved organic matter or contamination of water leaving radiance sig-
nal by surrounding vegetation) that could negatively influence our field spectral
measurements.
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Figure 5.3 Linear relationship between field measured concentration of chlorophyll (a)
and phycocyanin (b) and two spectral indices that were calculated from in-situ spectral
data.

The chlorophyll and the phycocyanin concentrations were mapped using the
following equations:

Ca = 50.03 R700
R675

− 62.19, R2 = 0.90, (5.1)

Pc = 26.10 R700
R600

− 19.58, R2 = 0.73. (5.2)

The established equations were consequently applied on a per pixel basis to the
entire hyperspectral image of the Brno reservoir (Figure 5.4). The maps ex-
hibit similar spatial pattern of Ca, as well as of Pc concentration. This could
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be expected, as both pigments correlate to each other (Randolph et al. 2008).
The highest concentrations were observed close to the dam, which is the place of
the highest accumulation of slowly-floating phytoplankton and the shores that are
used for recreational purposes. Both the maps indicate quite low concentrations
of Ca and Pc for most of the reservoir area except those close to the dam and at
Zouvalka site. This was also confirmed by the field measurements when concen-
trations of Ca and Pc are higher in the dam area than the remaining sampling
locations (Table 5.1). Figure 5.5 shows a contribution of main phytoplankton
groups to the total chlorophyll concentration at Zouvalka and dam sites obtained
from active FluoroProbe measurements.

Table 5.1 Water quality indicators measured in-situ at Brno reservoir in September 2013.

Locality/Water
characteristics

Number of
samples

Chlorophyll
(µg l−1)

Phycocyanin
(µg l−1)

Open water area 6 6.4±0.12 4.45±0.15
Zouvalka 2 20.7 10.2
Dam area 2 32.7 10.7

(a) (b)

Figure 5.4 Maps of chlorophyll-a (a) and phycocyanin concentrations (b) in the Brno
reservoir assessed from the AISA hyperspectral images. The dam site is situated at the
right lower corner of the map and Zouvalka site above the upper left corner, outside the
map area.
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Figure 5.5 Contribution of phytoplankton groups to total chlorophyll concentration at
two locations with elevated chlorophyll concentration as measured by FluoroProbe.

5.4 Conclusions

The study demonstrates that airborne hyperspectral data can be used to map spa-
tial distribution of water blooms of algae and cyanobacteria using spectral indices
sensitive to chlorophyll and phycocyanin concentrations. The empirical models de-
veloped here could be successfully applied on airborne imagery data from different
time of data acquisition if the distribution of other optically active substances in
water does not differ significantly from the conditions of this study. A solution to
the problems of variable conditions would be to build up an integrated framework
of complementary field and airborne observations, where rapid measurements of
field data would be used to update the existing empirical model. The measure-
ments from such a system could be also used in calibration of physically based
radiative transfer (RT) model. And even RT model is typically sensitive to precise
parameterization it can be used for water bodies at different sites.
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6
MAPPING OF OVERBURDEN

SUBSTRATES FOR MINE
SITE RE-CULTIVATION

Jan Frouz, Miroslav Pikl, Olga Vindušková, and Frantǐsek Zemek

6.1 Introduction

Open pit coal mining has a severe impact on ecosystems in the mining area.
An ecosystem affected by opencast mining is literally erased, either excavated or
buried. Overburden (spoil) overlying the coal seam is removed and deposited in
heaps leading to disruption of large areas (Bell & Donnelly, 2006). In many cases,
overburden material becomes the parent substrate for soil development (Šourková
et al. 2005; Karu et al. 2009).

This overburden material comes often from large depth, often over hundred
meters. These substrates differ substantially from recent soils. They often have
extreme pH (too acidic or too alkaline), extreme texture (gravel, sandy or clay),
and in many cases the material is separated in terms of grains of similar size.
In some locations overburden material may contain high concentrations of heavy
metals and or may have high salt content reflected in high conductivity. The sub-
strates often lack recent organic matter but may contain fossil organic matter of
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various origin (Bradshaw 1997).
Contrary to other polluted sites where toxicity appears as a result of the

accumulation of exogenous toxic substances, in post-mining sites the toxicity is
typically a result of in situ weathering. Weathering, namely pyrite oxidation, de-
creases pH and may release heavy metals. Weathering may also release other ions
that may cause high conductivity of the substrate resulting in toxicity of post min-
ing sites (Bradshaw 1997; Frouz et al. 2005). Determination of potential toxicity
of post mining sites is important for prediction of their future development. For
example in Sokolov coal mining district in nontoxic sites, vegetation coverage can
be reached by proper reclamation in 5-10 years and even spontaneous succession
processes lead to vegetation cover in 10–15 years (Frouz et al. 2014), whereas
in sites with high pyrite oxidation, vegetation may not appear for next 50 years
(Frouz et al. 2014).

Biological tests with overburden material show that its toxicity in Sokolov
area is most closely associated with pH, conductivity and polyphenol content.
Primary cause of pH decrease is usually pyrite weathering. Pyrite in coal mining
sites is usually associated with the coal seam; consequently, toxicity problems are
typically the most severe in substrates that contain traces of coal. Identification
of coal may thus be a good indicator of toxicity. This effect may be enhanced
in materials with low sorption capacity, and low content of basic cations such
as in sand or kaolinite. Besides toxicity associated with coal accompanied by
pyrite, there may be also other mechanisms causing toxicity, e.g., sites with high
conductivity given by high content of carbonates and sulfates may be toxic for
plants and soil fauna due to high osmotic pressure (Frouz et al. 2005).

Identification of fossil organic matter (FOM) and characterizing its quality
may be important in identifying potentially toxic sites. After reclamation or
during spontaneous recovery of the vegetation cover, the content of recent soil
organic matter (RSOM) gradually increases (Šourková et al. 2005). This has
positive impacts on soil quality (increases porosity, aeration, water capacity of
soil and infiltration). RSOM also represents an energy and nutrient source for soil
biota (Brady & Weil 1999); moreover, RSOM represents a carbon sink and may
reduce the rising concentration of CO2 in the atmosphere (IPCC 2007).

The amount of RSOM in soils is determined as organic carbon content. How-
ever, in mine soils fossil forms of organic carbon such as coal or kerogen can also
be frequently found (Vindušková & Frouz 2013). Conventional methods for soil
organic carbon determination unfortunately cannot distinguish between recent
and fossil carbon forms. The only method suitable for such differentiation is ra-
diocarbon dating. However, this method is very expensive, thus it cannot be used
routinely. Proximal remote sensing techniques such as near infrared spectroscopy
(NIRS) hold potential to discriminate between recent and fossil carbon forms.

In general, remote sensing techniques are useful in the study of many soil
properties (Ben-Dor et al. 1997; Mulder et al. 2011). However, a common
problem with the study of soil properties using airborne devices is that soil is
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often covered by vegetation and if the soil is bare, the surface layer of the soil is
often covered by physical or biological crusts that may have different properties
than deeper soil horizons. In this aspect, post mining areas are ideally suited
for using remote sensing tools as they have a large area of bare soil which often
was quite recently homogenized during the heaping process. Moreover, for many
key processes such as erosion or plant establishment, the conditions of the surface
layer are more important than conditions in deeper soil.

In this chapter, we illustrate the possible application of remote sensing tech-
niques to map post mining substrates having various types of potential toxicity
or even to directly predict the toxicity of post mining sites and estimate content
of fossil and recent organic matter.

6.2 Material and Methods

6.2.1 Study Area

Two set of post mining sites were used in this study. The first set consists of 42 sites
described in (Frouz et al. 2005). These were sampled in three mining districts:
1. Sokolov – coal-mining district near the towns Sokolov and Chodov (North-West
Czech Republic), 2. North Czech coal mining district near B́ılina and Úst́ı nad
Labem (North Bohemia), and 3. Lusatian mining district near Cottbus (Eastern
Germany). Both Czech areas are brown coal mining district whereas lignite is
mined in Germany near Cottbus. In all sites, open cast mines produce large areas
of tailings where spoil material was sampled. In both Czech coal-mining districts,
claylike tertiary sediments dominated, whereas sand was most frequent in German
mining district. This set was used for comparison of chemical and ecotoxicological
characterization of substrates with laboratory spectral measurements.

The second set of plots was located in post mining plots near Sokolov (Czech
Republic). Average altitude of the study area is about 500—700 m a.s.l. In major-
ity of the heaps, the overburden consists mainly of tertiary clays of Cypris series
with alkaline pH. These clays are dominated by kaolinite, illite and montmoril-
lonite, and contain 2–10 % of fossil organic matter. In smaller extent, other sub-
strates are present, namely neutral or slightly acidic tuffites, which are weathered,
volcanic ashes of tertiary origin underlying the coal seams, acidic clay substrates
dominated with kaolinite, coal and acidic coal rich kaolinite clays, and finally
jarosite crusts on tertiary clay substrates. This set, covering a part of the heap
of an area about 0.5 ha, was used for comparison of chemical and ecotoxicological
characterization of substrates with field measurements of spectra, along with the
first set. In addition, this set was used for classification of substrates based on
airborne hyperspectral data. In this part of the heap, substrates were mapped by
field survey and pH was measured in a regular 25 × 25 m grid.
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6.2.2 Laboratory Chemical and Ecotoxicological Characterization
of Substrates

The material for chemical analysis was air-dried and stored in a dark place at
room temperature. Soil pH in water was measured using a pH meter with glass
electrode, conductivity was measured in filtrated 1:5 spoil water suspension using
a conductometer. Two ecotoxicity tests were applied, i.e., germination of plant
Sinapis alba and enchytraeid toxicity test. S. alba germination was tested with
a pot experiment similar to that used by Fargasová (Fargasová 1994; Fargasová
1998). The test is based on proportion of seeds that germinate on given substrate.
The enchytraeid toxicity test was conducted as described by Frouz et al. (Frouz
et al. 2005); this test measures growth of population of potworms in individual
substrates from constant number of introduced even-aged potworms.

6.2.3 Spectral Data

A. Laboratory spectral measurements
Spectral signatures of 42 clay substrates collected at the first site were measured
in a laboratory. The samples were dried and sieved through 2 mm calibrated sieve.
The samples were measured in black Petri dishes with ASD FieldSpec 3: spectral
range 350–2500 nm, sampling step 1 nm, full width at maximum half – FWHM
3 nm. The Petri dishes with soil samples were placed on a turntable (ASD Inc.)
ensuring that measured spectra were homogenized (average of 50 measurements)
and all samples were measured with the same viewing and illuminating geometry.
White reference panel (Spectralonr) was used to obtain reflectance data directly.
Measured spectra were corrected using dynamic, parabolic linear transformation
(Beal & Eamon 2009) in order to compensate the shifts between visible and infra-
red regions.

To generate a model relating laboratory spectral data with substrate pH or
toxicity, two steps were used. In the first step, the correlations between reflectance
of substrates at individual wavelengths and pH and toxicity were calculated. Then
we identified all local correlation minima or maxima as a function of wavelength.
From these, we selected individual wavelengths or mean wavelengths for a certain
interval if correlation formed a rather flat plateau. These values were then the
subject of multiple regression analysis with forward selection in Statistica 10.

B. Field spectral measurements
Field reflectance measurements (ASD FieldSpec 3) of nine substrates were carried
out at 14 homogenous plots in the second test area (Sokolov region). We used
the white reference panel (Spectralonr) before and after each substrate mea-
surements to obtain directly surface reflectance signatures. The parabolic linear
transformation was carried out on measured spectra.
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Each plot spectrum was calculated as an average of about 15 individual mea-
surements as some measurements were identified as outliers. ASD measurements
were resampled to fit the spectral resolution of the hyperspectral airborne data
described in the next section.

C. Airborne spectral measurements
Airborne hyperspectral data over the second site (Sokolov region) were acquired
on August 6th 2008 using AISA Eagle pushbroom hyperspectral system with
spatial resolution 0.4 m, spectral resolution of 10 nm within spectral range of 400–
1000 nm. Ancillary field data were collected simultaneously with the overflight.
Field data supported atmospheric and geometric corrections of airborne images
(see Section 2.3 for details).

We used CaliGeo (Spectral Imaging Ltd.) software to carry out the radiomet-
ric corrections and orthorectification of the raw AISA Eagle image data. ATCOR-
4 software was applied for atmospheric, topographic and BRDF corrections of
airborne data.

6.2.4 Mapping of Clay Substrate Composition

We used spectral angle mapper classifier (SAM) to classify soil substrates from
the hyperspectral image. SAM is a method for comparing imagery spectra to
a spectrum representing the class (Kruse et al. 1993). Training spectra for indi-
vidual substrate classes were taken from the field ASD measurements described in
6.2.3. The SAM classification was implemented in ENVI using a multiple thresh-
old option. A threshold value was set up for each substrate class. The regions of
interest (ROI) were determined based on the known positions of substrates in the
area and average value of spectral angle was calculated for a given ROI.

6.2.5 Fossil Organic Matter Characterization Using Near Infrared
Spectroscopy

Near infrared spectra were laboratory measured in a spectral range from 1000 to
2500 nm. Artificial mixtures (n = 125) of claystone, coal and recent organic matter
(from fermentation layer) were measured as well as a set of 14 soils in which recent
carbon was previously determined by radiocarbon dating (Karu et al. 2009). The
recent carbon content in mixtures was calculated from the proportion of recent
organic matter and its total organic carbon content. The total organic carbon
content in mixtures was calculated as a sum of organic carbon from claystone,
coal and recent organic matter.

Partial least squares (Janik et al. 2007) was used to develop calibration models
between reflectance and total organic carbon (Ctot) and recent carbon (Crec)
content — first using only the mixtures, then adding also the soil spectra.
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6.3 Results and Discussion

6.3.1 Spectral Signatures of Different Clay Substrates Measured
in a Lab and Their Relation to Chemistry and Toxicity

Earlier studies (Frouz et al. 2005; Frouz et al. 2011) show that conductivity and
pH are major factors contributing to substrate toxicity for representatives of both
soil fauna and plants. Using multiple regressions with forward selection, we were
able to produce an equation that predicts pH of overburden from laboratory spec-
troscopic data (Figure 6.1) obtained in three mining sites (Table 6.1). Despite
the fact that this approach was very successful in determining pH (the equation
is highly significant and explains more than 80 % of data variability), the attempt
to explain toxicity the same way was much less successful. Although the resulting
equation was also statistically significant it explained only 23 % of data variability.
This discrepancy between successful estimate of pH and less successful estimate
of toxicity is caused by fact that the toxicity of post-mining sites is quite complex
as several environmental factors and their combinations contribute to the final
toxicity of the substrate (Frouz et al. 2005; Frouz et al. 2011). The most frequent
reason for the toxicity is a low pH. Low pH also increases the solubility of alu-
minium and other metals which may contribute to the toxicity of substrates. This
indicates that the effect of pH may be modified by the presence of metals, namely
As. High conductivity caused by the high concentration of cations, namely Na, is
another reason for high toxicity. The high conductivity is sometimes accompanied
by a high pH. Finally, toxicity is often accompanied by coal, as coal content closely
negatively correlates with pH but potentially may affect soil biota also directly
through polyphenols in coal (Frouz et al. 2005). This complexity of toxicity is
a reason why the attempt to estimate toxicity as a simple function of spectral
properties did not meet with much success.

6.3.2 Spatial Distribution of Clay Substrates Using AISA Eagle
Images and Their Use for Prediction of Toxicity

Geological substrates forming the overburden have similar chemical properties
and toxicity values (Frouz et al. 2005) and are often distinct from other sub-
strates. Because toxicity is very complex problem, as was explained above, it
seems to be more promising to use hyperspectral data to classify prevailing over-
burden substrate and then estimate potential toxicity based on mean values of
toxicity for individual overburden substrates. Classification of individual over-
burden substrate types from airborne hyperspectral data was done using spectral
angle mapper. Overall classification accuracy was 71.18 %. Classification results
for each substrate are presented in Table 6.2. Clay substrates of the Cypris series
were divided for the purpose of classification into yellow and grey subclass. Both
dominate the area and these subclasses reached the highest classification accuracy.
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Figure 6.1 Samples and spectra of selected clay substrates: Top left image, green line
in plot above – yellow clay (illite + jarosite). Top middle, red line – jarosite crust. Top
right, blue line – coal clay (kaolinite + coal)

This classification was then used to produce a map of substrates in about one
ha area of Podkrušnohorská heap with large variety of substrates (Figure 6.2).
In this area, 14 samples were randomly taken and their toxicity was tested by
Sinapis alba germination test. The combination of average substrate toxicity with
the substrate map obtained from hyperspectral data gives us spatial prediction
of substrate toxicity. Comparison of toxicity predicted using hyperspectral data
and measured toxicity in these 14 points indicates that predictions of substrate
toxicity using hyperspectral data with substrate classification explains about 55 %
of data variability. This is greater than toxicity as predicted on basis of pH
value extrapolated from regular grid of points, which explains only 21 % of data
variability.

The reason why hyperspectral mapping is much more successful in this context
is connected with the manner in which the heap was created. Individual piles of
material of different origin are heaped in various shapes and in sizes which are
below the resolution of the 25 × 25 m grid. Edges of these piles are very narrow
and basically unpredictable by classical interpolation techniques.
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Table 6.1 Results of multiple regression estimating substrate (a) pH and (b) toxicity
based on laboratory hyperspectral data.

a) Wavelength Coefficient SDa pa

intercept 9.46 0.95 < 0.0001
1270 -247.23 156.80 0.1241
435–450 88.59 13.67 < 0.0001
380–385 -105.61 18.59 < 0.0001
350 -7.94 9.10 0.3891
1880–1885 76.09 11.84 < 0.0001
1425–1430 -106.47 17.97 < 0.0001
1249 265.60 160.15 0.1064

b) Wavelength Coefficient SDa pa

intercept 0.76 0.23 0.0024
1290 -2.00 0.62 0.0026
435–450 7.09 3.47 0.0481
380–385 -6.48 4.33 0.1427

a SD – standard deviation, p – probability

Table 6.2 Classification accuracies for overburden substrates in Podkrušnohorská post
mining heap near Sokolov.

Substrate Producer accuracya [%] User accuracyb [%]
coal clay 97.76 51.82
clay of cypris series 100.00 99.76

– yellow
tuffites 48.85 100.00
kaolinitic clays 76.49 99.48
underlying soils 27.27 25.53
clay of cypris series 93.42 85.34

– grey
coal with clay 50.00 97.40
coal 60.89 100.00
Jarosite cover on clay 49.02 100.00
a Producer accuracy results from dividing the number of correctly classified pixels in each

class by the number of training pixels used for that class.
b User accuracy results from dividing the number of correctly classified pixels in each

category by the total number of pixels that were classified in that class.
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Figure 6.2 Map of substrate classification obtained from hyper spectral data and pH
interpolated from field measurements. Numbers in the left mark type of substrate: 1 –
coal clay, 2 – clay of cypris serie yellow, 3 – tuffites, 4 – underlying soils, 5 – kaolinite
clay, 6 – clay of cypris serie grey, 7 – jarosite. Scale at the bottom shows pH color coding.

6.3.3 Can Near Infrared Spectroscopy Distinguish Between Re-
cent and Fossil Organic Matter in Mine Soils?

To find out if content of recent and fossil organic matter can be predicted from
near infrared spectra, predicted values of recent and total organic carbon were
compared with their true values (measured by radiocarbon dating and elemental
analysis).

Calibration models based only on artificial mixtures could not predict recent
nor total organic carbon in soils successfully. However, addition of soil spectra
to the calibration improved the predictions considerably – as indicated by root
mean square error of cross-validation (RMSECV) and modeling efficiency (EF)
comparing explanatory power to model complexity. Models both for recent carbon
(RMSECV=0.70, EF=0.95) and total organic carbon (RMSECV=0.85, EF=0.94)
were highly successful (Loague & Green 1991; Michel et al. 2009). Parameters of
the derived calibrations are similar or better than those reported by other authors
who recommend NIRS for measurement of different carbon fractions (Bornemann
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et al. 2008; Michel et al. 2009).
The improving effect of soil spectra in calibrations indicates that the spectra

of the mixtures and soils differ significantly, i.e. have different spectral features.
This is understandable as we may expect that recent organic matter in soils is
older and thus more decomposed and fossil organic matter in soils may be modified
by weathering and decomposition. The soil samples may be also more variable in
mineral composition which may also affect the soil spectra.

Figure 6.3 First loading spectra of calibrations for total organic carbon (Ctot) and recent
carbon (Crec) together with spectra of C-poor and C-rich claystone.

The most important spectral features for the prediction of recent and total
organic carbon are depicted as first loading spectra resulting from partial least
square regression (Figure 6.3). The peaks observed can be well assigned to char-
acteristic absorptions of soil organic matter in the near infrared region that have
been previously described in literature (Ben-Dor et al. 1997; Michel et al. 2009;
Stenberg et al. 2010); their assignments are listed in Table 6.3. For example, it
is visible even to naked eye that absorption characteristics of aliphatic structures
(1726 and 1761) are more pronounced in C-rich than in C-poor claystone. The
same features are visible in the Ctot loading spectrum. This corresponds well
with the aliphatic character of fossil organic matter in the studied area, which is
mainly kerogen of algal origin (Kř́ıbek et al. 1998).

6.4 Conclusions

This contribution demonstrates the usefulness of remote sensing techniques in
studying post mining sites and at the same time the large potential of these
techniques for practical applications.

Classification of overburden substrates brings much better prediction of spatial
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Table 6.3 Band assignment (after Ben Dor et al., 1997; Michel et al., 2009; Stenberg et
al., 2010;)

Wavelength (nm) Assignment Possible constituent

1449 4ν of C=O carboxylic acids

1465 OH in water (ν2 + ν3); cellulose/lignin/starch/
CH2 pectin

1582 OH in water (2ν); pectin/starch/cellulose
H-bonded OH group

1726 2ν of aliphatic C-H stretch cellulose/lignin/starch/
pectin/wax/humic acid

1761 2ν of aliphatic C-H stretch cellulose/lignin/starch/
pectin/wax/humic acid

1929 OH in water (ν1 + ν3); cellulose/lignin/glucan/
3ν of -C=O and of -COOH, pectin/wax/humic acid
C=O of ketonic carbonyl,
CONH2

2068 3ν of aromatic C=C, cellulose/glucan/pectin
COO-hydrogen bond,
C=O

2137 3ν of aromatic C=C, cellulose/glucan/pectin
COO-hydrogen bond,
C=O

2198 3ν of aromatic C=C starch/lignin/wax/tannins

2276 combination of O-H stretch
and C-O of cellulose;
combination of C-H stretch
and CH2 deformation
of starch

2309 3ν of aliphatic C-H, humic acid/wax/starch
aromatic ring stretch

2347 3ν of aliphatic C-H cellulose/lignin/glucan
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distribution of substrate toxicity than interpolation of chemical properties that
give best correlation with toxicity from field surveys. There can be a potential
to improve the prediction of toxicity by including some auxiliary environmental
parameters related to orographic features (e.g. latent drainage system, slope).

Near infrared spectroscopy combined with partial-least squares provides ac-
curate estimates of recent and total organic carbon in mine soil samples. This
method may offer a simple, rapid, and low-cost alternative to expensive and time-
consuming radiocarbon dating.
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SENSING IN PRECISION
AGRICULTURE
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Petr Hlavinka, Jan Křen, Daniela Semerádová, and Zdeněk Žalud

In recent years agricultural entrepreneurs farm about 4,264 million ha of land in
the Czech Republic, approximately half (54 %) of the total area of the country.
The predominant fraction of this area (3 million ha, 71 %) is cultivated as arable
land on which individual crops are rotated. The arable land of the Czech Republic
with high intensity of crop production has specific traits. Large areas of cultivated
fields with a combination of high variability of topographical and geological fac-
tors result in higher heterogeneity of soil condition and crop yield. More than
54 % of agricultural land is managed by farms with a size of over 1000 ha (Min-
istry of Agriculture 2010). Based on a statistical evaluation of the Land Parcel
Information System (LPIS), over 40 % of arable land has a field size larger than
20 ha. Crop management in these conditions requires advanced decision making,
such as precision agriculture.

Site specific management, known as precision agriculture, is an internation-
ally unified term for directions of land management using new technologies that

97
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began to be developed in the eighties and early nineties of the twentieth century.
The aim of precision agriculture is an optimization of production inputs (fertiliz-
ers, pesticides, fuel, etc.) based on the local crop requirements and soil condition.
Crop management in this way can lead to economically efficient use of agrochemi-
cals and minimization of environmental risks. Site specific management takes into
consideration spatial variability within fields and optimizes the production inputs
(Figure 7.1), thus fulfilling the objectives of sustainable agriculture (Corwin &
Plant 2005).

Figure 7.1 An example of uniform (a) versus variable application (b) of potassium fer-
tilizers at the farm with the 1500 ha of arable land. The application rates are tailored
according to the nutrient content in soil (adapted after Lukas et al. 2011b).

Basic principles of precision agriculture are not new, the spatial and temporal
variability of soil and crop was recognized by farmers many centuries ago. Smaller
parcels with natural boundaries allow changing the agrotechnical treatments man-
ually. With a merging of small parcels into large blocks, intensification of produc-
tion, and mechanization in the middle of the last century, it was no longer possible
to take into account the spatial variability without modern technologies. Global
navigation satellite systems (GNSS), information and communication technologies
(ICT) and satellite/airborne remote sensing, together with geographic information
systems (GIS) significantly contribute to collection and processing of information
necessary for precision management of agricultural crops.

The importance of evaluation of spatial variability within the fields
Pierce & Nowak (1999) consider assessing variability as the critical first step be-
cause “one cannot manage what one does not know”. The factors and properties
that regulate crop growth and yield vary in space and time. The higher is the
spatial variability of a soil conditions (or crop properties), the higher is the po-
tential for precision management and the greater its potential value. The degree
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of difficulty, however, increases with higher dynamics of the temporal component.
The consequences of site variability are most reflected in the crop yield. The va-

riability of yield represented by yield maps can serve as input information for deci-
sions about site specific management. If the cause of yield variability is not known,
uniform crop management is suggested (Adamchuk et al. 2010, Figure 7.2). Site
specific management can be recommended if the spatial structure of yield differ-
ences are consistent over multiple years and correspond to some agronomically
important phenomena (nutrient supply, topography, land use history, etc.).

Yes No

No

Yes

Yes

No

Is significant spatial yield variability consistent from year to year?

Variable treatment to eliminate the cause

Site-specific field management

Uniform field managementIs the cause for variability known?

Can the cause of variability be eliminated?

Figure 7.2 Yield-based decision making tree for application of site specific management
(adapted after Adamchuk et al. 2010).

7.1 Mapping of Spatial Variability of Soil Properties
Within the Fields

The conventional techniques of soil variability mapping are slowly being replaced
by indirect methods such as the on-the-go systems (see overview by Adamchuk
et al. (2004)) or remote sensing. These methods have better spatial coverage but
are less accurate compared to field sampling followed by laboratory procedures
(Christy 2008).

For the on-the-go method, soil electrical conductivity (EC) has become one
of the most frequently used measurements to characterize field variability for
application to precision agriculture (Corwin & Lesch 2003). Soil conductivity is
influenced by combination of physical and chemical properties including soluble
salts, clay content and mineralogy, soil water content, bulk density, organic matter,
and soil temperature (Corwin & Lesch 2005). A number of factors complicate the
direct application of EC in site specific management, because the interpretation
of EC maps requires the determination of the dominant soil factor (Figure 7.3).

Mapping techniques based on remote sensing data are extensively used. These
techniques use the spectral characteristics of the soil surface to infer soil hetero-
geneity. Baumgardner et al. (1985) presents an overview of spectral properties
of soil. Similar to other geophysical methods, remote sensing cannot be used
to determine specific soil properties without additional soil survey data. Spectral
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Figure 7.3 Map of soil electrical conductivity (a), aerial image in visible spectrum (b)
and yield variability (c) at 52-ha field all showing similar spatial pattern (adapted after
Lukas et al. 2011a).

characteristics of the soil surface are influenced by many factors, mainly by content
of soil organic matter, soil moisture, soil texture, content of iron oxides (Lilienthal
2003), and surface roughness (Lillesand et al. 2008). Detailed descriptions of the
effects of soil factors are given in Baumgardner et al. (1985), Lilienthal (2003),
van der Meer & de Jong (2006) and Ben-Dor et al. (2009).
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Figure 7.4 The effect of soil moisture on soil reflectance (adapted after Lilienthal 2003).

An increase of soil moisture generally decreases the reflectance, mainly in
visible spectrum part (400–700 nm). Wet soil looks darker than dry soil. There
are characteristic absorption features of EM in the soil spectral response curve
around 1400 and 1900 nm due the water content (Figure 7.4). A higher content
of organic matter causes a decrease in the reflectance across the whole VNIR
spectrum (Figure 7.5) (Baumgardner et al. 1985).

In the case of soil texture the increasing size of soil particles generally increases
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Figure 7.5 Spectral characteristics of soil with different content of soil organic matter
(SOM): A – fibric soil with low content of SOM; B – hemic soil; and C – sapric soil with
higher SOM content (adapted after Baumgardner et al. 1985).

the soil reflectance in visible spectrum. Loamy soils are darker in comparison to
sandy soil. The size of soil particles influences some other soil properties, such as
soil moisture and structure, which also affect the resulting soil reflectance. That is
why the exact determination of soil texture from RS data is difficult (van der Meer
& de Jong 2006). The classification of soil texture from hyperspectral images can
be improved by timing remote surveys when the soil is in optimal wet conditions
in order to maximize the differences between soil types (Casa et al. 2013).

Although remote sensing and geophysical mapping work on different physical
principles they can provide similar results. De Benedetto et al. (2013) show that
a combination of both methods can be successfully used to identify areas within
the fields having similar production conditions, the so-called management zones.

7.2 Assessment of Crop Variability by Remote
Sensing

In agriculture, mapping of vegetation by remote sensing could be used for addi-
tional purposes, such as classification of land use, identification of crop species,
estimation of nutrition and water status of crops, and prediction of crop yields.
The spectral characteristics of plants and canopy stands are described in Chap-
ters 1 and 2. This description is mainly valid for healthy (green) vegetation. For
plants under stress or senescence there is typically an increase of reflectance in the
red part of the spectrum and a decrease in NIR (Figure 7.6). Spectral measure-
ments are able to detect the changes in vegetation under stress (deficit of water
or nutrition, disease infestation), but usually without being able to determine the
exact cause of the stress.

The visible and the near infrared part of EM have been used in a number
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Figure 7.6 Changes in spectral curves of vegetation (adapted after Lilienthal, 2003):
(a) during growing and senescence stage and (b) affected by different amount of biomass
- leaf area index (LAI).

of studies for linking spectral reflectance and plant biophysical parameters via
vegetation indices (VIs). For example Li et al. (2014) present a list of vegetation
hyperspectral indices, which can be used for estimation of canopy nitrogen content
of winter wheat. In our case study we use four VIs, namely Normalized Difference
Vegetation Index (NDVI), Red Edge Inflection Point index (REIP), Photochem-
ical Reflectance Index (PRI), and Water Band Index (WBI) for assessment of
homogeneity of crop canopy. Information about many other narrow-band VIs can
be found in Chapter 8 (Table 8.1).

NDVI was originally developed for estimating the proportion of vegetation
cover in shrubby area from broadband satellite data (Rouse et al. 1974). Nor-
malization partially reduces some disruptive impacts on the imagery data, such
as differences in scene illumination, shadows and atmospheric influences, because
their effect is similar across the spectral bands. The equation for calculation of
NDVI from broadband sensors is:

NDVI = RNIR −RRed
RNIR +RRed

, (7.1)

where, RNIR, RRed are reflectances in NIR and red bands, respectively. When hy-
perspectral data are used, only selected bands with specific wavelength are chosen,
typically R665 and R801. The result of the calculation of NDVI is a dimensionless
value from the interval between −1 and 1.

For example, the results of field experiments with winter wheat and spring
barley have shown that higher positive NDVI values indicate a higher amount of
aboveground biomass, plant weight, increased number of plants per m2, number
of tillers per plant, and improved nutritional status (higher chlorophyll content),
all this resulting in higher crop yields (Křen et al. 2009).
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The relationship between canopy density and NDVI is not linear because NDVI
shows saturation at higher LAI (Baret & Guyot 1991). When reaching a certain
level of LAI (or above-ground biomass), the value of broadband NDVI does not
reflect the increase of canopy density linearly anymore and they decrease with
vegetation senescence (Figure 7.7).

Figure 7.7 Relationship between broadband NDVI and biomass during vegetation period
for winter wheat in 2013 (unpublished data from the authors).

One of the vegetation indices often used for estimation of nutrient status of
field crops is Red Edge Inflection Point (REIP) or Red Edge Position (REP), which
indicates the wavelength of the inflection point in the red edge part of spectrum.
The position of this point is generally in the region 680–750 nm. An increase of
chlorophyll concentration in plants or amount of biomass causes a shift of inflection
point to higher wavelengths (Heege et al. 2008). A positive characteristic of
REIP is lower sensitivity to interfering factors such as radiation reflected from
soil background and atmospheric effects, together with high sensitivity to crop
parameters (chlorophyll content and canopy biomass). Unlike NDVI, the REIP
index does not saturate at higher values of LAI.

Several methods have been proposed for calculation of REIP (Miller et al.
1990; Cho & Skidmore 2006) as numerical calculation of the second derivative re-
flectance curves of vegetation or as linear interpolation according to the empirical
equation proposed by Guyot et al. (1988) using four spectral bands:

REIP = 700 + 40(R670 +R780)/2 −R700
R740 −R700

[nm]. (7.2)

Sensitivity of REIP nitrogen concentration in leaves was observed in many recent
studies. Mariotto et al. (2013) find that use of narrowband hyperspectral sensors
provide 25 % greater variability in crop modelling and 20 % greater accuracy in
crop discrimination compared to broadband sensors. Moreover, 3–7 narrow bands
explained over 90 % of the variability in crop models. The results in Heege et al.
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(2008) show a shift of REIP by 1 nm corresponds to a difference of 15 kg N applied
in fertilizers 6 weeks before observation. However, determination of fertilization
rate requires calibration each crop species, variety, vegetation stage and soil (field)
conditions.

Gamon et al. (1990) proposed Photochemical Reflectance Index (PRI):

PRI = R531 −R570
R531 +R570

, (7.3)

where R531 and R570 represent leaf reflectance at the subscripted wavelengths.
PRI is often considered as a proxy of light use efficiency (LUE) during actual
photosynthesis of vegetation. LUE reflects both the stand conditions and “veg-
etation vitality” at those stand conditions. Estimation of LUE is an important
input to the model for calculation of gross primary productivity of ecosystems
and carbon balance (Hilker et al. 2008).

The Water Band Index (WBI) is a reflectance index that is sensitive to changes
in canopy water status. Its formulation uses the reflectance in the NIR at 900 nm
and 970 nm by the specific absorption characteristics of water at these wavelengths
and the ability to estimate the depth of light penetration (Penuelas et al. 1993):

WBI = R970
R900

. (7.4)

As the water content of vegetation canopies increases, the strength of the ab-
sorption around 970 nm increases relative to that of 900 nm. Applications include
canopy stress analysis, productivity prediction and modelling, fire hazard condi-
tion analysis, cropland management, and studies of ecosystem physiology.

7.3 Case Study

The aim of the study is to demonstrate application of airborne imagery spec-
troscopy in estimation of biomass and nutrition, and water status of cereals crop.
The proximal and remote mapping of the crop nutritional status has a long tra-
dition with a success rate ranging from medium to high depending on the con-
ditions of the study. Information about the above-ground biomass provides high
reliability for yield estimation, particularly in early growth stages (Křen et al.
2014). Nitrogen is the most important macronutrient for crop development, yield
formation and final product quality, but with possible environmental risks from
overdosing. A visual analysis of the spectral signatures can identify the differ-
ences between crops in different nutritional states, but for decision-making it is
necessary to quantify these differences and one of the best ways to do this is to
use vegetation indices.

The key objective of the study was to utilize spectral characteristics of crop
canopy stand, obtained from hyperspectral imaging in the form of narrowband
vegetation indices to estimate the crop parameters relevant for yield formation;
in case of cereals mainly aboveground canopy biomass and chlorophyll content.
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7.3.1 Data and Methods

For this purposes, a 62-ha field (predominant soil type chernozem) with spring
barley in South Moravia region was chosen for ground and aerial survey during
vegetation period 2014. The plant samples were taken at BBCH 32 growth stage
(stem elongation) for estimation of above-ground biomass. Sampling was carried
out in irregular sampling grid with 10 samples distributed within the fields by
following the main soil zones. Simultaneously, estimation of nitrogen status of
leaves was done by chlorophyll-meter measurement (Yara N-Tester). Yara N-
Tester is based on the Minolta SPAD 502, which measures light transmitted by
the plant leaf at two different wavelengths, 650 and 940 nm (Arregui et al. 2006).
It became a common tool in agronomy praxis for diagnosis of plant N nutrient
status and recommendation for nitrogen fertilizers application. Thirty random
measurements were recorded to get the representative value in each sampling
point, always following the recommendations of the manufacturer of the device.
Each sampling point represented a circle of 5 m diameter.

(a) (b)

Figure 7.8 (a) Plant sampling of spring barley canopy stand at BBCH 32 and
(b) chlorophyll-meter estimation of nutrition status of plants by Yara N-Tester.

The airborne data acquisition was carried out using hyperspectral sensor
CASI-1500 (ITRES, Canada) with 96 spectral bands (365–1050 nm) and spatial
resolution of 1 m per pixel. Image data were pre-processed for radiometric, at-
mospheric and geometric corrections. More details about HS data pre-processing
can be found in Chapter 2. Vegetation indices were calculated for circle areas
around sampling points using a zonal statistic tool. For this study, four indices
were selected to verify the estimation of plant parameters: Normalized Difference
Vegetation Index (NDVI), Red Edge Inflection Point (REIP), Photochemical Re-
flectance Index (PRI) and Water Band Index (WBI).

We used pre-processed airborne LiDAR data gridded with the resolution of
1 elevation point per 5 m pixel to calculate DEM and topographic characteristics
such as elevation, slope, curvature, aspect and Topographic Wetness Index (TWI).
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TWI quantifies soil moisture, giving the highest values to the sinks of a drainage
system and lower values to the peaks following this equation:

TWI = ln
(

A

tan b

)
, (7.5)

where A means water accumulation value and b is slope angle at each pixel.
Furthermore, a map of soil bonity units (BPEJ) was used to delineate main

soil types within the field. All data were processed in ESRI ArcGIS 10.2 and
Exelis ENVI 5.1.

7.3.2 Results and Discussion

Sampling design and differences in spectral signatures of spring barley as obtained
from hyperspectral imaging are shown in Figure 7.9. The main differences were
recorded in the near infrared and red parts of spectrum, which correspond to crop
development.

A correlation analysis was calculated among chlorophyll-meter plant status,
aboveground biomass, topographic parameters and selected vegetation indices
(Table 7.1). The results showed statistically significant (p < 0.05) relationships
between observed crop parameters (chlorophyll-meter readings, above-ground bio-
mass) and vegetation indices, except between REIP and biomass, which was non-
significant. Chlorophyll-meter readings were significantly correlated (p < 0.05)
with all examined vegetation indices.
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Figure 7.9 (a) CASI image of the spring barely field with sampling points (i.e. colour
dots) and (b) corresponding spectral signatures. Spectral curves are colour-coded by
sampling point.

A statistically significant correlation (p < 0.05) between vegetation indices
and field measurements from 10 sampling points enabled us to calculate two re-
gression equations. The first one is between amount of dry biomass and NDVI
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Table 7.1 Correlation analysis (Pearson’s correlation coefficient) among crop parameters,
topographic derivatives and vegetation indices for spring barley field (* indicate statistical
significance at α = 0.05)

Elevation TWI NDVI REIP PRI WBI

Chlorophyll-
meter -0.671* 0.859* 0.825* 0.637* 0.696* 0.859*

Biomass -0.845* 0.713* 0.851* 0.311 0.731* 0.846*

Note: TWI – Topographic Wetness Index, NDVI – Normalized Difference Vegetation
Index, REIP – Red Edge Inflection Point, PRI – Photochemical Reflectance Index,
WBI – Water Band Index
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Figure 7.10 Scatterplots of crop parameters and vegetation indices: (a) aboveground
biomass vs. Normalized Difference Vegetation Index; (b) chlorophyll-meter values mea-
sured by N-Tester vs. Water Band Index

(Figure 7.10a), the second between a proxy of nitrogen content in biomass (i.e.
chlorophyll-meter measurements) and WBI (Figure 7.10b). The first regression
was used to map spatial distribution of dry biomass within the whole field (Fig-
ure 7.11e). The second regression was used to map spatial distribution of the crop
nutrition status (Figure 7.11f).

The statistically significant correlation (p < 0.05) between WBI and TWI
(r2 = 0.814) documents the positive effect of field zones with higher soil mois-
ture (higher TWI) on the crop development, represented by WBI. This effect
is highlighted in semi-arid conditions or in dry weather condition, such as oc-
curred during 2014 vegetation period at the observed locality. The influence of
topography was also confirmed as significant for crop parameters (TWI in Ta-
ble 7.1 and Figure 7.11c). This agrees with the results published by Godwin &
Miller (2003), where topography is mentioned as one of the most obvious causes
of variation found in field crops - it has an effect on soil parameters, which in-
fluence crop growth, but from practical point of view it is unchangeable and as
a result can be used only to explain variation. An example of interpretation of
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crop nutrition parameters by topographic characteristic and soil conditions is pre-
sented in a methodology developed by Rodriguez-Moreno et al. (2014). Also, the
photochemical reflectance index PRI correlates significantly with dry biomass, as
well as with chlorophyll-meter measurements (Table 7.1) and displays a pattern
(Figure 7.11d) similar to those two parameters.

The goodness of fit between crop parameters and vegetation indices suggests
that traditional extensive plant analysis can be replaced by an estimate in map
form derived from airborne high spatial resolution HS data and a limited number
of sampling points for calibration and verification.

(a) (b)

(c) (d)

Figure 7.11 Maps of the studied barley field: (a) DEM from LiDAR data, (b) Topographic
Wetness Index calculated from DEM, (c) delineation of soil units, (d) Photochemical Re-
flectance Index derived from hyperspectral data, (e) biomass estimated from Normalized
Difference Vegetation Index (NDVI) and (f) estimation of chlorophyll-meter values (i.e.
proxy of nitrogen content) based on the Water Band Index (WBI).
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(e) (f)

Continued Figure 7.11

7.4 Conclusions

Hyperspectral imaging proved its ability to identify spatial variability of spring
barley crop parameters, important for yield formation. Narrow band vegetation
indices were used to estimate above-ground canopy biomass and chlorophyll-meter
values for the whole field using 10 calibration points. Results in the form of maps
could be used for site specific decision making in precision agriculture.
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CHLOROPHYLL MAPPING

OF CONIFEROUS FORESTS
Lucie Homolová, R̊užena Janoutová, Jan Hanuš, and Zbyněk Malenovský

8.1 Introduction

Life on the Earth is driven by photosynthesis. Photosynthetic activity of bacte-
ria, algae and higher plants is controlled by photosynthetic pigments (chlorophylls,
carotenoids and anthocyanins). The most important of these pigments are chloro-
phylls a and b (Cab) as they directly control the amount of absorbed solar radia-
tion available for the photosynthesis. Therefore low Cab concentration can limit
plants’ photosynthesis. Furthermore Cab is an indirect measure of plant nutrient
status as much of leaf nitrogen is incorporated in chlorophyll macromolecules and
a moderately strong correlation between N and Cab exists across various species
(Homolová et al. 2013). Plant chlorophyll content can be therefore considered as
an indicator photosynthetic activity that reflects plant fitness, or conversely, an
exposure to environmental stress factors. However, what makes Cab so appealing
from the perspective of remote sensing is the fact that Cab molecules strongly ab-
sorb incoming solar radiation in the visible part of the EM spectra. This enables
non-destructive quantification of plant Cab content as indicator of photosynthetic
activity using spectral data measured by means of proximal or remote sensing
(Filella & Penuelas 1994; Datt 1998; Ustin et al. 2009).

111



112 8. Chlorophyll mapping of coniferous forests

Methods of quantitative estimation of plant Cab using proximal and remote
sensing data can be divided into two major groups: empirical and physical ap-
proaches (Liang 2004). Empirical approaches build on a simple regression rela-
tionship established between field measured Cab and reflectance data. (Curran
et al. 2001; Gitelson et al. 2003; Main et al. 2011). Physical approaches use
radiative transfer models (RTM) to simulate plant-light interactions and thereby
providing an explicit link between an output (top-of-canopy reflectance) and in-
put (biochemical and structural) characteristics of the main scattering elements
– leaves (Jacquemoud et al. 2009). Chlorophyll content is one of the main para-
meters of RTMs that can be effectively retrieved from RS data by inverting RTM
(Baret & Buis 2008). In this chapter we will first introduce different approaches
to estimation of leaf chlorophyll content and then illustrate them on a specific
example of Cab estimation of Norway spruce trees from very high resolution hy-
perspectral data (Malenovský et al. 2013).

8.2 RS-based Methods of Chlorophyll Estimation:
A Mini-Review

Empirical approaches use statistical methods to establish a relationship between
a limited set of field measurements and spectral data. Spectral data can be in
the form of reflectance values or, more often, the reflectance data are in some way
first transformed. The most common transformations for imaging spectroscopy
data are calculating first or second derivatives, continuum removal or combining
individual spectral bands into an index (le Maire et al. 2008; Schlerf et al. 2010).
A large number of chlorophyll sensitive vegetation indices (VI) have been devel-
oped at the leaf, as well as the canopy level, from the reflectance data. Le Maire
et al. (2004) and subsequently Main et al. (2011) evaluated the performance
of about 70 chlorophyll sensitive VIs. Table 8.1 brings an overview of a few
Cab-sensitive VIs, which shows the large variability of VI types. Among many
vegetation indices, those that are based on the shape of spectral continuum are
particularly suitable for use with hyperspectral RS data as good estimator of Cab

content.
Another spectral indicator, which has been often associated with plant health

status, and therefore logically to chlorophyll content, is the position of the red-
edge inflection point (REIP) (Mutanga & Skidmore 2007). Hyperspectral data
are most suitable for an accurate determination of the REIP. However, the role of
REIP as a reliable estimator of plant chlorophyll content seems to be slightly con-
troversial. On one hand Broge and Leblanc (2001) compared the performance of
several broadband and narrowband VI (including three methods of REIP extrac-
tion) for Cab estimation and concluded that RIEP indicators were surprisingly
too sensitive to variations of canopy, background and atmospheric parameters.
The REIP performed well only at high vegetation densities. Similarly, le Maire et
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al. (2004) reported that RIEP indices were outperformed by traditional, simpler
Cab-sensitive VIs. On the other hand, Main et al. (2011) emphasized in their
comparative study that REIPs were the most consistent and robust indices for
Cab estimation.

The greatest advantage of the empirical methods is that they are computa-
tionally fast, easy to establish and usually they are rather accurate at the local
scale, where field measurements are available. A big disadvantage of these meth-
ods is that they often lack cause-effect relationships. Consequently, predictive
statistical relationships are less robust as they are usually site, species and time
specific (Colombo et al. 2003; Gökkaya et al. 2014).

Limitations of empirical retrieval methods can be partly overcome by using
physically-based retrieval methods (Asner et al. 2003). Leaf-level RTM simulate
leaf reflectance and transmittance properties. Canopy-level RTM effectively scale
the leaf optical properties to the level of plant canopy (e.g. agricultural fields,
forests). Among the leaf-level RTMs, the PROSPECT model (Jacquemoud &
Baret 1990; Feret et al. 2008) is probably the most widely used model to simu-
late leaf optical properties. This is due to its simplicity and low number of input
parameters (see Figure 8.2 and Section 8.3). Other leaf-level models such as LIB-
ERTY (Dawson et al. 1998), LEAFMOD (Ganapol et al. 1998), SLOP (Maier et
al. 1999) or DLM (Stuckens et al. 2009) are less often used. There has been a large
number of canopy RTMs developed and they span from a relatively simple ones to
complex, computationally demanding 3-D models. A good overview of currently
used canopy RTMs is provided at the website of RAdiation transfer Model Inter-
comparison (RAMI, http://rami-benchmark.jrc.ec.europa.eu). Among the
canopy-level RTMs, the SAIL model (Verhoef & Bach 2007; Jacquemoud et al.
2009) is the most frequently used model to scale-up leaf level optical properties to
the canopy level. The main reason why the combination of PROSPECT-SAIL is
so popular for interpretation of RS data is its simplicity in terms of input param-
eters (Jacquemoud et al. 2009) and its solid performance for structurally simple
canopies (Widlowski et al. 2007). The SAIL model was primarily designed for
homogenous canopies such as crops. However, it can be also applied to forests if
the architecture is close to the assumption of homogenous foliage turbid media,
i.e. the combination of dense and structurally uniform forests and larger pixel
size of RS data (Sampson et al. 2003; Laurent et al. 2011). Other types of
canopy RTM that attempt to reproduce the complex architecture of trees and
forests are naturally more suitable to interpret RS data acquired over forested
areas. Examples of 3D canopy RTMs are: DART (Gastellu-Etchegorry et al.
1996; Gastellu-Etchegorry et al. 2004), whose application is introduced later on,
FLIGHT (North 1996), Raytran (Govaerts & Verstraete 1998) and many others
(we recommend to visit the RAMI website).

Plant properties such as chlorophyll content can be retrieved from RS data
by inverting a RTM (Baret & Buis 2008; Croft et al. 2013). Several direct and
indirect inversion techniques have been developed and we will briefly introduce

http://rami-benchmark.jrc.ec.europa.eu
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them in the following sections.
The direct inversion methods use iterative numeric approaches to find values

of the RTM input variables that minimize or maximize a cost function, while
satisfying some constraints. Many optimization algorithms exits, but in RS studies
one often encounter, for example the Quasi-Newton optimization (Combal et al.
2002) or the simplex method (Gascon et al. 2004). Direct inversions face two
major limitations. First, an initial guess on values of input variables is needed,
which might imply that a local, rather than general solution is found. Second,
direct inversions can be computationally and time demanding as the RTM runs
every iteration. Therefore their applicability is significantly restricted by the
complexity of the employed RTM and by the size of RS images (Combal et al.
2002; Kimes et al. 2002).

The indirect inversion methods that use look-up tables (LUT) are more fre-
quently applied on an operational basis compared to the direct inversions. In the
LUT inversion, a RTM is run in forward mode and sets of pre-computed spec-
tral signatures with corresponding input variables are stored in a database, called
a look-up table. To find the solution to the inverse problem, the LUT is sorted
according to a cost function allowing global search, i.e. avoiding a local solution.
The cost function represents a statistical distance between measured (RMES) and
simulated (RLUT ) reflectance at wavelength λ and the classical example frequently
applied in RS studies is the minimization of a root mean square error (RMSE):

RMSE =

√√√√ 1
n

n∑
i=1

(RMES,λ −RLUT,λ)2. (8.1)

However, in case of outliers and non-linear behaviour between canopy parameters
and spectral reflectance, the key assumption for using RMSE is violated (Leonenko
et al. 2013). Therefore Leonenko et al. (2013) and Rivera et al. (2013) suggested
alternative cost functions coming from various fields of statistics and mathematics
to provide more robust way to retrieve canopy parameters.

Certainly the greatest advantage of LUT inversion is that it is a simple and
computationally efficient approach to retrieving vegetation parameters from RS
data. Combal et al. (2002) compared three inversion approaches (iterative opti-
mization using Quasi-Newton algorithm, LUT inversion and artificial neural net-
works) to retrieve four vegetation parameters (Cab, leaf area index, fractional cover
and fraction of absorbed photosynthetically active radiation) from the spectral
data simulated by RTMs. The LUT inversion was evaluated as the fastest retrieval
approach, especially when a priori information was used to restrict the size of the
LUT. On the other hand, the LUT-based approach required a large amount of
operations and computer memory because of the need to sort the LUTs. The main
problem associated with the LUT inversion is that the given solution might not
be the unique one as different sets of input parameters can correspond to almost
similar spectra. This is often called the ill-posed inversion problem (Combal et al.
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Table 8.1 Selection of chlorophyll-sensitive vegetation indices. For a complete overview
see le Maire et al. (2004) and Main et al. (2011). Abbreviations: Rλ – reflectance at
wavelength λ, Dλ – first derivative at wavelength λ, C – canopy scale, L – leaf scale.

1. Simple reflectance (or first derivative) ratios
Index Scale Reference

R750/R710, D730/D706, D705/D722 C (Zarco-Tejada et al. 2003;
Zarco-Tejada et al. 2004)

R695/R420, R695/R760,
R710/R760, R695/R670

L (Carte, 1994)

R750/R550, R750/R700 L (Gitelson & Merzlyak 1994)

2. Normalized difference
Index Scale Reference

(R925 −R710)/(R925 +R710) C (le Maire et al. 2008)
(R800 −R550)/(R800 +R550) C (Gitelson et al. 1996)
(R680 −R430)/(R680 +R430) L (Penuelas et al. 1994)

3. Three-band indices
Index Scale Reference

R672/(R550R708),
(R850 −R710)/(R850 −R680) L (Datt 1998; Datt 1999)

(R734 −R747)/(R715 + 726) L (Vogelmann et al. 1993)
MRCI: (R754 −R708)/(R708 −R681) C (Dash & Curran 2004)
mND705:
(R750 −R705)/(R750 +R705 − 2R445) C (Sims & Gamon 2002)

mSR705: (R750 −R445)/(R705 −R445)

4. Combined indices
Index Scale Reference

TCARI/OSAVI, TCARI: 3[(R700–R670)–
−0.2(R700–R550)(R700/R670)], OSAVI:
1.16(R800–R670)/(R800–R670 + 0.16)

C (Haboudane et al. 2002)

MCARI/OSAVI, MCARI:
[(R700–R670)–0.2(R700–R550)](R700/R670) C (Daughtry et al. 2000)
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Continued Table 8.1

5. Indices based on spectral continuum, integral indices
Index Scale Reference∫ 700

400 Rλ dλ C (Zarco-Tejada et al. 2001)∫ 780
680 Dλ dλ L (Filella & Penuelas 1994)∫ 750
705

Rλ

R705−1 dλ L (Gitelson & Merzlyak 1994)

NAOC643-795 C (Delegido et al. 2010)

6. Red edge inflection point
Index Scale Reference

REIP – four point interpolation:
700 + 40[(R670+R780

2 –R700)/(R740 −R700)] L (Guyot & Baret 1988)

REIP – inverted Gaussian fitting L/C (Miller et al. 1990)
REIP – Lagrangian technique L (Dawson & Curran 1998)
REIP – linear extrapolation L (Cho & Skidmore 2006)

7. Other indices
Index Scale Reference

Curvature index: R675R690/R
2
683 C (Zarco-Tejada et al. 2003)

Double difference:
(R749–R720)–(R701–R672) L (le Maire et al. 2004)

Red edge symmetry:
(R718–R675)/(R755–R675) C (Chang-Hua et al. 2010)

(R750–R800/R695–R740)–1 L (Gitelson et al. 2003)

2002). This can be alleviated by regularization of the inverse problem, i.e. consid-
ering only those solutions that are in the proximity of the true value. The most
often implemented regularization step is to consider a priori knowledge that is
available about the unknown input RTM parameters (Combal et al. 2002) or to
use neighbourhood radiometric information of the pixel (Atzberger 2004; Houborg
et al. 2009; Laurent et al. 2013). Some additional steps to stabilize a solution are
to determine an optimal size of the LUT (Weiss et al. 2000), to average a number
of top solutions (Weiss et al. 2000; Darvishzadeh et al. 2008; Rivera et al. 2013)
and to select only important, uncorrelated spectral bands (Schlerf & Atzberger
2006; Darvishzadeh et al. 2008).

Another group of indirect inversion algorithms used in RS are so-called ma-
chine learning algorithms. They are applied on a LUT database simulated by
a RTM to generate an adaptive, nonparametric relationship between an input
(i.e. reflectance) and output (i.e. vegetation parameters). In remote sensing, ma-
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chine learning algorithms are mainly employed for image classification and pattern
recognition (Mas & Flores 2008). However, they also show strong potential for es-
timation of continuous vegetation parameters (Schlerf & Atzberger 2006; Verrelst
et al. 2012b). Among the machine learning algorithms, artificial neural networks
(ANN) are probably the most often used (Atzberger 2004). ANN can handle po-
tential noise in spectral data quite well, but it can be difficult and time consuming
to train a proper ANN architecture. Other machine learning algorithms that are
considerably less used in RS estimation of vegetation parameters are e.g., support
vector machines, kernel ridge regression and Gaussian processes (Verrelst et al.
2012b). According to recent work of Verrelst et al. (2012a; 2012b), Gaussian
processes seem to be a very promising method as it outperformed other modern
machine learning algorithms.

8.3 Chlorophyll Content Retrieval of Norway Spruce

The objective of this chapter is to demonstrate applications of some methods that
were introduced in Section 8.2 to estimate chlorophyll content in Norway spruce
forest. In this case study, which is based on Malenovský et al. (2013), we employ
radiative transfer modelling, artificial neural networks and vegetation indices to
assess Cab content of Norway spruce trees. The flowchart (Figure 8.1) provides
an overview of the methodology, which is further introduced in the following
sections.

8.3.1 Experimental Test Site and Ground Measurements

An immature Norway spruce plantation that was selected for this case study
is part of the CzechGlobe’s permanent experimental research station B́ılý Kř́ıž
in the Moravian-Silesian Beskydy mountains (18.54°E, 49.50°N, 936 m above sea
level). This spruce stand can be characterised as follows: an average canopy height
about 12 m, an average stem diameter about 13 cm and leaf area index about 8.
In 2004 an extensive field and airborne campaign took a place, during which we
sampled spectral, biochemical and structural properties of spruce needles. In total
10 sample trees were investigated in detail. We sampled one branch at the top
(sunlit) and at the bottom (shaded) of a tree. From each branch shoots of three
most recent age-classes were collected resulting in 6 needle samples per tree. Each
needle sample was analysed for Cab content and specific leaf area in a laboratory
according to standard protocols verified by Lhotáková et al. (2007). An average
value of Cab content per tree was then calculated as a weighted average of 6 samples
according to biomass distribution inside spruce crowns.
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Figure 8.1 The conceptual work flow of the Cab retrieval from hyperspectral data by
means of radiative transfer modelling.

8.3.2 Remote Sensing Data

Airborne hyperspectral data were acquired by a pushbroom VNIR airborne imag-
ing spectroradiometer AISA Eagle (Specim Ltd., Finalnd) on September 18th

2004. In total 64 spectral bands between 400 and 980 nm were acquired with
an average spectral sampling distance of 10 nm. The image spatial resolution was
0.4 m. The AISA images were radiometrically corrected using factory calibration
coefficients in the CaliGeo software (AISA processing toolbox provided by Specim
Ltd., Finland). Further, the atmospheric corrections and nadir image normaliza-
tion were carried out using ground-measured spectra of five fabricated Lambertian
calibration panels in the Atcor-4 software (Richter & Schlapfer 2002). The pixel
size of 0.4 m allowed us to detect individual spruce crowns and even to differen-
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tiate the sunlit and the shaded crown parts by applying a supervised maximum
likelihood classification. For the retrieval of Cab content we used only sunlit crown
parts as they provide higher signal-to-noise ratio than shaded pixels.

8.3.3 Radiative Transfer Modelling

The radiative transfer models used in this study were a leaf level model PROS-
PECT (Jacquemoud & Baret, 1990) coupled with a canopy model DART (Gastellu-
Etchegorry et al., 1996). The PROSPECT model was adjusted to spruce needles
by Malenovský et al. (2006). Figure 8.2 shows a simple graphical representa-
tion of both models. For a better illustration of how complex RT modelling
can be in terms of input parameters, in Table 8.2 we bring an overview of the
PROSPECT-DART input parameters used in this study. A detailed description
of how individual DART input parameters were obtained is provided in Malen-
ovský et al. (2008; 2013). RTM was used to build up a database of simulated
canopy reflectance values (look-up tables).

DART

(canopy model)

leaves

grass

soil
lake

wall

roof gaps

Sun

irradiance

Atmospheric

radiance

Atmospheric

layers
Direct:solar

radiance

PROSPECT

(leaf model)

Reflectance

Transmittance

PROSPECT:inputs:

Chlorophyll:content

Water:content

Leaf:mass:per:area

N:number:(structure)

PROSPECT:simulated:leaf:optical:properties:are:used:as:inputs:into:the:DART:model

Figure 8.2 Simplified representation of the PROSPECT and the DART radiative transfer
models used in this study. (Source: The scheme of DART was modified from CESBIO
(2013) and the scheme of PROSPECT was designed by authors)
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8.3.4 Retrieval Methods

We used the database of simulated top-of-canopy reflectance values (LUT database)
to estimate spruce crown Cab from the AISA image data. We implemented three
types of Cab retrievals: i) band ratio vegetation indices, ii) vegetation index based
on the spectral continuum, and iii) a machine learning algorithm – artificial neural
networks. In the first two cases, the PROSPECT-DART simulated LUTs were
used to establish a statistical relationship between the Cab and the vegetation
indices. In the last case, the look-up tables were used to train the neural network.

Band ratio vegetation indices
In this case study, we used three, previously developed vegetation indices: 1) Nor-
malized Difference optical index (ND925&710), which was recommended by le Maire
et al. (2008) as the best index for Cab retrieval of broadleaf canopies from the
Hyperion data; 2) Simple reflectance Ratio index (SR750/710), which was used by
Zarco-Tejada et al. (2004) to estimate Cab of Jack pine canopies; 3) a combination
of two indices TCARI and OSAVI, which was originally designed by Haboudane
et al. (2002) for crop canopies (see their equations in Table 8.1).

Vegetation index based on spectral continuum
This index was developed by Malenovský et al. (2013) and it benefits from the
shape of spectral continuum that hyperspectral data offer. Its design is schemat-
ically explained in Figure 8.3. The index design employs a continuum removal
(CR) transformation (Kokaly & Clark 1999) that enhances the specific absorption
feature of Cab in the red part of the electromagnetic spectra. For the continuum
removal transformation it is crucial to include the most sensitive Cab absorption
wavelengths and to avoid at the same time the negative interferences of the canopy
structure. Therefore the CR interval starts in the middle of the red chlorophyll
absorption feature at the wavelength of 650 nm and ends in the middle of the
red edge region at the wavelength of 720 nm. The index was then calculated as
the Area Under Curve of CR reflectance between 650 and 720 nm (AUC650–720)
normalized by the CR Band Depth at 670 nm (CBD670).

Artificial neural networks
Artificial neural networks belong to the group of machine learning algorithms that
can be employed for a look-up table based inversion of RTM (Combal et al. 2002).
A suitable ANN architecture was evaluated in the MATLAB neural network tool-
box (The MathWorks, Inc., USA) and established to be a two-layer feed-forward
back-propagation ANN. The first (input) layer was composed of six neurons cor-
responding to the six simulated AISA spectral bands (listed in Table 8.2) and
associated with a tan-sigmoidal transfer function. A linear transfer function was
assigned to the second (output) layer that contained only one neuron producing
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the Cab estimate. The most crucial step of the ANN approach is the proper train-
ing of the selected network. One fourth of the PROSPECT-DART simulated LUT
entries were randomly selected to train the network. The high-speed processing
Levenberg–Marquardt optimization algorithm was applied for the network train-
ing. The performance of the training was evaluated using another fourth of the
LUT entries. The best performing ANN (i.e. not over-fitted and with the lowest
possible root mean square error and highest R2) was employed to retrieve Cab

from the AISA sunlit crown pixels.
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Figure 8.3 Figures (a) and (b) show the concept of the continuum removal transforma-
tion. The remaining plots only schematically depict the sensitivity of area under curve
AUC650−720 (c), continuum band depth at 670 nm (CBD670), and ANCB650−720 index
(e) towards varying chlorophyll values.

8.3.5 Results and Discussion

Figure 8.3c indicates that the area integrated under the simulated continuum
removed curves between 650 and 720 nm (AUC650−720) is exponentially related
to Cab. Due to the early saturation these exponential relationships cannot be
exploited to estimate Cab values above 40 µg cm−2. The grey area in Figure 8.3c
shows that multiple AUC values correspond to one Cab. This is due to variations
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in canopy cover and leaf area index. Figure 8.3d indicates the band depth of the
strongest chlorophyll absorption at 670 nm (CBD670), is also insensitive to Cab.
But the ratio of both, AUC650−720/CBD670, exhibits a strong nearly linear relation
to Cab (Figure 8.3e). This formulation gives basis of the new optical index called
‘Area under continuum-removed curve Normalized to the Chlorophyll absorption
Band depth between 650 and 720 nm’ (ANCB650−720). The index can estimate
Cab of sunlit Norway spruce crowns independently from the LAI variation. The
relationship between Cab and ANCB650−720 is follows:

ln(Cab) = 7.40 − 7984.01
(ANCB650−720)2 ,

(
R2 = 0.99, p < 0.001

)
. (8.2)

ANCB650−720 compared to the other three vegetation indices exhibits fairly supe-
rior performance (Figure 8.4). All three relationships are statistically significant,
but only ANCB650−720 and TCARI/OSAVI seem not to be influenced by leaf area
index and canopy cover (note the narrow dispersion of points for each Cab level).
A map of chlorophyll content as obtained from the ANCB650−720 index (eq. 8.2)
is showed in Figure 8.5.
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Table 8.2 Input parameters of PROSPECT-DART radiative transfer model to simulate
spruce stand top-of-canopy reflectance.

DART input parameters
(F/V)a Symbol Units Values

Sun position Zenith angle (F) θs [°] 47.8
Azimuth angle (F) Φs [°] 183.4

Forest scene
parameters

Voxel size (F) [m] 0.2
Horizontal dimensions (F) x, y [m] 6.0, 6.0
Slope (F) [°] 13.5
Number of tree crowns (F) 4–7

Canopy closure (V) CC [%] 75–95 (in
steps of 10)

Leaf area index (V) LAI [m2m−2]
4.0–9.0 (in
steps of 1.0)

Average tree
parameters
mean (std.
dev.)

Trunk height below crown (F) [m] 0.38 (0.13)
Trunk height within crown (F) [m] 8.08 (0.76)
Trunk diameter below crown (F) [m] 0.17 (0.02)
Trunk diameter within crown (F) [relat] 0.41 (0.03)
Total tree height (F) [m] 10.45 (0.88)
Crown type (F) Conical
Crown height (F) [m] 10.08 (0.76)
Crown bottom radius (F) [m] 1.60 (0.24)
Number of crown levels (F) 10
Average leaf angle (F) ALA [°] 37 (7)

Mean Twig area index (F) TAI [m2m−2]
0.082
(0.017)

Average twig angle (F) ATA [°] 35
Percentage of full leaf cells in
crown (F) [%] 48

PROSPECT
inputs for leaf
optical prop.

Chlorophyll content (V) Cab [µg·cm−2]
10–100 (in
steps of 10)

Water content (F) Cw [cm] 0.036–0.048

Dry matter content (F) Cm [g·cm−2] 0.012–0.023

N parameter (F) N [-] 2

Simulated
spectral
bands in
DART

Central wavelengths of visible
(VIS) Bands (F) λV IS [nm]

652.1, 661.4,
670.7, 680.1,
689.4

Central wavelengths of near
infrared (NIR) bands (F) λNIR [nm] 698.7, 708.1,

717.4
a F/V denotes whether the given input parameter was kept fixed (F) or varied (V) for the pur-

pose of the generation look-up tables.
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The ANN was trained on continuum-removed reflectance values. Therefore,
ANN produced very similar range of values and spatial patterns as ANCB650−720
(Figure 8.5). The subtraction of the ANN Cab map from the ANCB650–720 Cab map
revealed an absolute mean difference of only 1.8 µg cm−2. The mean differences
between ANN and the other three indices are much larger, i.e. -9.01 µg cm−2 for
ND925&710, -4.30 µg cm−2 for SR750/710, and 13.29 µg cm−2 for TCARI/OSAVI.
The comparison of retrieved Cab values with ground-measured Cab of spruce
crowns is shown in Figure 8.6. The highest R2 of 0.72 with the lowest RMSE
(2.27 µg cm−2) were obtained for ANCB650–720 (results for ANN not shown as
they are almost identical to ANCB650−720). The second most accurate retrieval
was performed with SR750/710, followed by ND925&710, both underestimating Cab

by 4.16 and 9.07 µg cm−2, respectively. The least accurate method is the TCARI/-
OSAVI estimation (R2 = 0.41 with an RMSE equal to 12.30 µg cm−2), despite
its fair performance on simulated LUT database (cf. Figure 8.4d). A visual in-
vestigation of the Cab map revealed that the systematic overestimation of the
TCARI/OSAVI retrieval is caused by pixels with lower reflectance located at the
edge of spruce crowns. These pixels are more likely affected by the background
reflectance or they might contain a higher proportion of shadows than the one
simulated by the RT models.

Figure 8.5 Map of chlorophyll content of Norway spruce forest as estimated by the
ANCB650−720 index.
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Figure 8.6 Comparison of chlorophyll estimated values by means of vegetation indices (a)
ANCB650−720, (b) ND925&710, (c) SR750/710 and (d) TCARI/OSAVI and ground measured
chlorophyll of individual Norway spruce trees.

8.4 Conclusions

In this chapter we introduced a variety of RS-based approaches available for es-
timation of plant properties. More specifically, we described a case study where
radiative transfer modelling in combination with vegetation indices and artificial
neural networks were employed to estimate chlorophyll content of Norway spruce
canopies. Results show that approaches using the shape of spectral signatures
(a vegetation index and artificial neural networks applied on continuum removed
spectra) are successful in retrieval of chlorophyll content of spruce crowns. Both
approaches outperformed traditional ratio-based vegetation indices. The neural
networks approach was slightly more accurate that the ANCB650−720 index, but
more laborious and computationally intensive. The ANCB650–720 index is there-
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fore fast and robust estimator, if applied to airborne images of sub-meter spatial
resolution, which allows elimination of spectrally impure or noisy (e.g. deeply
shadowed) canopy pixels.
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9
APPLICATIONS OF

AIRBORNE LASER SCANNING
IN FORESTRY

Jan Novotný, Tomáš Mikita, Martin Machala, and Lucie Homolová

9.1 Introduction

Rapid technical advances currently make airborne laser scanning (ALS) one of the
most promising technologies for the retrieval of detailed information about forests
on different scales, i.e., from individual trees to the plot/stand level to inventories
at the national level. ALS data has proven superior qualities compared to other
types of optical data used for forest inventory (Hyyppä & Hyyppä 1999).

ALS data for forestry applications can be of two types. Discrete multiple
return systems provide data of individual backscattered returns and their inten-
sities from different canopy layers. Full waveform systems record the continuous
backscattered signal from a return (Heinzel & Koch 2011; Wulder et al. 2012).
ALS data provide a solid basis for a wide range of applications and analysis in
forestry. The most common product of ALS is the digital terrain model (DTM)
(see Section 4.5 for details). A DTM helps forest managers and engineers to de-
sign and optimize the forest road network and to plan a harvesting system or
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protection against erosion. Furthermore, ALS data alone, or in combination with
multispectral or hyperspectral images, can serve as underlying spatial informa-
tion for classification of forest types (Machala & Zejdová 2014) and possibly of
individual tree species (Yu et al. 2014). The most interesting and promising way
that ALS data can support forest management is to derive forest inventory pa-
rameters. It is possible to estimate parameters at the stand level such as stand
borders, mean canopy height, canopy density, as well as to detect individual trees
and to derive their height, crown dimensions and diameter breast height (DBH)
(Heurich et al. 2003; Holopainen & Hyyppä 2003; Maltamo 2004). ALS therefore
is an efficient substitute for time-consuming and spatially constrained field work
in obtaining essential forest inventory parameters. ALS-derived forest parameters
can be further used to estimate forest stand biomass, timber volume etc.

There are two approaches to deriving forest parameters from the ALS data:
area-based (ABA) and individual tree detection-based (ITD) approaches. In
the case of ABA, percentiles and other distribution-related features of the laser
backscattered signal are used to predict stand parameters, such as mean tree
height, mean diameter and basal area. The prediction, however, is based on
empirical statistical techniques that ultimately require accurate field data on se-
lected forest parameters to establish a predictive relationship (Yu et al. 2010).
These methods are used for commercial forest inventories in Scandinavian coun-
tries (Holopainen et al. 2014). The ITD approach is based on detection of in-
dividual tree crowns, their heights and crown dimensions from a raster canopy
height model (CHM, which is calculated as the difference between digital surface
and terrain models). All other tree and forest stand parameters are estimated by
means of statistical models based on species-specific allometric equations that are
most frequently using tree height and tree density as inputs.

Forest inventory based on ITD is less often put into practice, because data
with high point densities are required in order to accurately detect and delineate
individual trees under various forest conditions (Vastaranta et al. 2011). Densi-
ties between 5 and 10 points per m2 are required for ITD compared to less than
1 point per m2 in case of the ABA approach. A great advantage of ITD over ABA
is that it provides true stem distribution enabling better predictions of timber
assortments (Holopainen et al. 2010). Another advantage is that the amount of
expensive fieldwork is significantly reduced compared to that which is necessary
when applying the ABA approach. It is easier to establish allometric equations
per species from individual tree measurements than for entire mixed stand. ITD
still relies on some field data in order to optimize the predictive models for specific
habitat conditions. Recent comparison of ABA and ITD approaches for boreal
forests indicated that both approaches achieve similar accuracy in estimation of
forest stand parameters (mean height, DBH and volume). The ITD approach
showed slightly better results, but economic costs of data acquisition and process-
ing were higher than of the ABA approach (Yu et al. 2010).

ALS is commonly used for forest inventories in Scandinavian countries (Carson
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et al. 2004; Næsset 2004), but the current situation in the Czech Republic is very
different. A complete inventory of forest stands in the Czech Republic is a part of
the Forest Management Plan (Forest act 289/1995 No.). Forest management plans
are created for a period of 10 years by means of field surveys and qualified estimates
of tree species, tree heights, DBH and stock of wood. Neither ABA nor ITD
forest inventory approaches using ALS data have been widely tested in the Czech
Republic. The main restriction is that suitable allometric models for timber and
biomass volume estimation are missing. Compared to the Scandinavian countries,
forests in the Czech Republic are of richer species composition and this implies
that the allometric models have to be tailored to multiple species. However, we are
strongly convinced that the ALS technology will sooner or later find its way into
current forestry practices. It has great potential to refine the estimation of forest
inventory parameters and support management planning leading to sustainable
forest management.

In the following sections we will introduce in greater depth the use of ALS data
for: i) classification of forest types, ii) detection and delineation of individual trees,
and iii) estimation of forest inventory parameters (tree height, DBH and stand
volume). It is important to mention that all the examples below are based on
different ALS data from different forest sites in the Czech Republic. Rather than
give details on data acquisition and processing, we will introduce each topic from
a more general point of view. Therefore, more technical details on classification
of forest types can be found in Machala & Zejdová (2014), on tree detection and
delineation in Novotný (2014), and on estimation of forest inventory parameters
in the Czech Republic in Mikita et al. (2013b).

9.2 Forest Segmentation and Classification

In general, the classification of RS data into information classes (types of land
cover) is a very broad task. Typically, optical multispectral or hyperspectral
image data are used, but recently also ALS data are employed for classification.
In forestry, the target classes are types of forest – broadleaf vs. coniferous, age
composition classes, or tree species in the most detail.

Classification methods can be divided into two broad groups, pixel-based and
object-based methods. Pixel-based methods work with raw or radiometric values
of individual pixels grouping them into appropriate classes based on their similar-
ity. Object-based methods first segment an image into objects (groups of adjacent
pixels with similar values). The segmented objects then have ordinary properties,
such as mean value of pixels within an object and its standard deviation and ge-
ometric properties, such as shape, size, length etc. All the object properties can
be then effectively used for object classification into thematic classes. For forestry
application, object based image analysis (OBIA) can offer a more sophisticated
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alternative compared to the pixel-based approaches by treating individual crowns
as objects.

Although the OBIA technique has been primarily developed for classification
of raster image data, e.g. classification of broadleaf vs. coniferous trees by Al-
berti et al. (2013), managed vs. natural forests by Dickinson et al. (2014), it
can be extended by including ALS data. In the case where only ALS data are
available the OBIA classification technique can still be applied on rasterized ALS
products such as DTM, DSM and CHM (Machala & Zejdová 2014). In such
a case, it is better not to rely on a CHM alone (Figure 9.1a), but to include other
thematic layers that can be directly calculated from a DTM or CHM. Examples
of additional data layers to support the OBIA classification process are: a slope
model (Figure 9.1b), a curvature model, and a range model (difference between
largest and smallest values of adjacent cells). All these layers can be used as
inputs for classification similar to how bands of multispectral imagery are used.
Various software packages capable of OBIA are available on the market today.

37.5 m0

(a)

88.3°0

(b)

Figure 9.1 (a) Canopy height model derived from ALS data acquired with Leica ALS50-II
(2.5 pt/m2) for mixed forest study area and (b) corresponding slope model with spatial
resolution of 0.5 m.

Specialized OBIA modules are included in major software packages such as Idrisi,
ENVI, ERDAS, and eCognition. A typical workflow in eCognition begins with
a multi-resolution segmentation process followed by classification. During the seg-
mentation, user-defined weights are assigned to each input layer and the amount
and the shape of gained segments is controlled by setting scale, shape and com-
pactness parameters. The result of this process is an image segmented into objects
(Figure 9.2a). Only then are all information classes that should be distinguished
declared and an operator defines training areas (i.e. representative image objects)
for each information class. The Nearest Neighbour classifier is employed to group
objects into pre-defined classes. Figure 9.2a illustrates the result of such an OBIA
classification of mixed broadleaf forest.
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(a) (b)

Figure 9.2 (a) Image objects (blue borderlines) created by the multiresolution segmen-
tation process in eCognition Developer software and (b) final result of corresponding
object-based classification. The classes are: broadleaf forest – yellow, coniferous forest
– green, plantation – brown, young stands – cyan and bare terrain – pink. The images
show the same area as at Figure 9.1.

An indispensable part of each classification workflow is an accuracy assess-
ment. This is usually done by comparison of the classification results with ground
truth data, which can be either collected during the field survey or based on other
data source, e.g. orthophoto imagery. The result of this comparison is calculated
in the form of an error matrix showing how many pixels were classified incorrectly
and what is the overall accuracy. Considering the results shown in Figure 9.2, the
overall accuracy of the object-based classification purely based on ALS data was
calculated to be equal to 82 % and the Kappa Index of Agreement (KIA) equal to
70 %. For the sake of completeness, the classification accuracy of the same study
area when using the combination of spectrozonal aerial imagery (red, green, blue
and NIR bands) with CHM derived from ALS data reached nearly 90 % and KIA
to 85 % (Machala & Zejdová 2014). Those results show that OBIA technique can
deliver highly accurate classification of forest types when imagery and ALS data
are combined, as well as when ALS data are used on their own.

9.3 Individual Tree Detection and Delineation

Attempts on tree crown detection and delineation from remotely sensed data
started in 1990’s as the first high resolution airborne optical imagery became
available. The current trend, however, is to employ ALS data or to combine both,
laser scanning and optical images. In Table 9.1 we bring a brief overview of studies
that use different kinds of RS data for crown detection and delineation.

A canopy height model (CHM=DSM–DTM) is the key input for tree detec-
tion and delineation. Figure 9.3a shows a CHM of a beech dominated forest.
The spatial resolution of a CHM, as well as of the underlying digital terrain and
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surface models, are key factors influencing the accuracy of tree detection. The spa-
tial resolution should be in correspondence with the average size of crowns, as
well as with the point density of ALS data. According to our experience, a tree
becomes detectable if its diameter exceeds four pixels and the point density of
underlying ALS data is higher than 3 pt/m2 (optimum is somewhere between 5
and 10 pt/m2). A CHM usually contains salt-and-pepper noise and therefore it
is highly recommended to apply a low-pass filtering (median or Gaussian filters)
to smooth the CHM. Furthermore, larger non-forested areas should be masked
out as they might hamper the detection and delineation algorithms. The method

Table 9.1 Overview of published studies reporting tree crown detection and delineation
using different types of airborne remote sensing data.

Type of remote
sensing data

Example studies (dominant tree species and
country of the study)

Optical RS (multispectral
or hyperspectral images)

Culvenor (2002) (Eucalyptus species; Australia)
Pitkänen (2001) (Scots pine, birch species,
European larch and Norway spruce; Finland)
(Erikson 2003) (Scots pine, birch species, Norway
spruce and European aspen; Sweden)
Pouliot et al. (2005) (White spruce; Canada)
Bunting & Lucas (2006) (Brigalow and Eucalyptus
species; Australia)
Hirschmugl et al. (2007) (Scots pine, Norway
spruce and oak; Austria)

Airborne laser scanning

Brandtberg et al. (2003) (Oak species, red maple
and yellow poplar; USA)
Chen et al. (2006) (Blue oak; USA)
Koch et al. (2006) (English oak, hornbeam, Douglas
fir, European beech, silver fir, etc.; Germany)
Gupta et al. (2010) (Scots pine, oak , hornbeam,
European beech, silver birch and Norway spruce;
Germany)
Korpela et al. (2010) (Scots pine, Norway spruce
and birch species; Finland)

Combination of airborne
laser scanning and optical
RS data

Leckie et al. (2003) (Douglas fir; Canada)
Breidenbach et al. (2010) (Scots pine, Norway
spruce, trembling aspen and birch species; Norway)

for detecting positions of individual trees from CHM is rather straightforward.
Tree tops correspond to local maxima in the CHM (or minima if an inverse CHM
is used). Local maxima are found using a sliding window. The size and shape
of the sliding window fundamentally influence the detection results. Considering
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the natural shape of trees, we would recommend using a circular shape for the
sliding window rather than rectangular. The size of the sliding window should be
set adaptively based on the expected size of analysed crowns. It is necessary to
search for the tops of higher trees with a larger sliding window and for the tops of
smaller trees with a smaller one. The expected size of crowns can be modelled via
an allometric equation for the actual tree species or can be estimated via math-
ematical image processing techniques (e.g., search for semivariance sills or slope
breaks on several transects laid through the inspected CHM).

Once the centres of individual trees are found, we can move to the next step of
crown delineation. We introduce here three delineation algorithms: inverse water-
shed, valley-flowing and seed region growing. A brief review of other delineation
algorithms is provided in Bunting & Lucas (2006). First, the inverse watershed
algorithm is adopted from hydrological applications of drainage basins. In this
algorithm, the CHM is inverted, local maxima become minima and the structure
is then “flooded” from these minima points. Borders of individual crowns are
drawn on the watershed ridges (Figure 9.4a). Second, the valley-following ap-
proach is based on the similarities between a forest canopy and a mountainous
area. Tree tops are found as local maxima. The boundaries of crowns are derived
from a network of local minima. A complex rule-based algorithm is used in order
to connect local minima into a network and remove dead ends (Gougeon 1995).
The third approach is called seeded region growing (Novotný 2014). Tree tops
are identified as local maxima again. From these pixels crowns are “grown” by
adding neighbourhood pixels until certain condition is met. The algorithm stops
when the height drops under a pre-set minimal limit and/or when two neighbour
crowns touch. It is necessary to grow all the trees simultaneously if we want to
reach the correct encounter of the neighbouring crowns. Figure 9.4 illustrates the
differences of crown delineation as obtained from the inverse watershed and region
seed growing algorithms. The performance of the seed region growing algorithm
for tree detection and delineation of deciduous and coniferous forests was evalu-
ated by Novotný (2014). The ALS system Riegl Q680i was used to collect data
with varying point density (10–50 pt/m2) at three forest sites. As Table 9.2 indi-
cates, despite the varying point density, the seed region growing algorithm shows
very consistent results across the forest types with different species composition,
height and age.

9.4 Calculation of Individual Tree Parameters from
ALS

The method for calculating tree parameters from ALS using the individual tree
detection-based approach is based primarily on correct detection of individual
tree crowns and calculation of corresponding tree heights. Species-specific allo-
metric equations are then used to calculate other tree parameters, such as DBH,
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K

arpaty)
M

ature
Europan

beech
26
.9

±
2
.6

50
6204

83.5%
80.8%



9.4. Calculation of Individual Tree Parameters from ALS 135

(a) (b)

Figure 9.3 (a) Example of an interpolated canopy height model. (b) Comparison of
trees detected from ALS data (+) with field geodetic measurements of their location (◦).
The results are based on ALS acquired over beech dominated forests with the scanning
point density of 5 pt/m2.

(a) (b)

Figure 9.4 Crown delineation results as obtained from (a) inversed watershed and
(b) seeded region growing algorithms. The results are based on ALS acquired over a ma-
ture beech forest in Št́ıtná nad Vlář́ı. The scanning point density was 50 pt/m2 and the
spatial resolution of CHM was 0.5 m.

timber volume. These parameters can be subsequently integrated and up-scaled
to the level of entire stands. The estimation accuracy of individual tree parame-
ters is almost solely dependent on the accuracy of tree detection and tree height
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estimation. Absolute accuracy of tree height estimates from ALS is around 1 m
(van Leeuwen & Nieuwenhuis 2010), but many studies agree that tree heights
are almost always underestimated by 1 to 5 m (Hyyppä & Inkinen 1999; Kwak
et al. 2007; Mikita et al. 2013b). The main factors influencing the accuracy
of tree detection and tree height estimation is the ground point density of ALS
data. In the case of lower point densities, the probability that a tree top will
be omitted increases. Inaccuracies may also occur when sublevel trees are not
detected (Yu et al. 2010; Mikita et al. 2013b). Other tree parameters, such as
DBH can be estimated achieving accuracies between 0.025 and 0.065 m (Korpela
et al. 2010; Holopainen et al. 2010). Forest stand parameters, such as standing
volume reaches accuracies from 5 % up to 35 % (Maltamo et al. 2009; Vauhkonen
et al. 2010; Tonolli et al. 2011).

Calculation of individual tree parameters (tree height, DBH and timber vol-
ume) is demonstrated here with a case study of Mikita et al. (2013b). For the
purpose of the study, ALS data with density of 4 pt/m2 were acquired with the
Leica ALS50-II system over a European beech dominated forest located at the
Training Forest Enterprise Křtiny (Mendelu). Simultaneously, geodetic and for-
est inventory surveying was performed to measure exact location, height and DBH
of about 600 trees, which was used for evaluation purposes.

For tree detection, the inverse watershed segmentation was used and tree
heights were directly calculated from the corresponding CHM. The positional
accuracy of the exact tree location was about 0.6 m and the overall accuracy of
the tree height estimation was about 5.5 m. The low accuracy of height estima-
tion can be attributed to the fact that small trees in the sublevel could not be
well detected from the ALS data. However, when only tall trees were considered
(h > 25 m) the accuracy increased to about 1.4 m. The cell size of the CHM raster
and the selection of an interpolation method used to create DTM and DSM also
had considerable impact on the accuracy of tree detection and height estimation.

Other tree parameters, diameter at breast height (DBH) and timber volume
(V), were calculated based on existing allometric equations that were adjusted us-
ing the actual field measurements. Both equations use tree height (h) as an input
parameter. For DBH calculation the adjusted Michajlov’s function (Michajlov
1943) was used:

DBH = 12.29
3.78 − ln(h− 1.3) . (9.1)

Calculation of timber volume of individual trees (V ) was based on a model de-
veloped in Slovakia (Petráš & Pajt́ık 1991). The model is established on rela-
tionships between allometric parameters obtained by destructive techniques (cut
tree, measurements of trunk, branches) and those obtained by nonedestructive
field measurements, such as tree height, DBH). Due to the dominance of beech
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in the research plots, coefficients derived for beech were used as follows:

V =
[
0.54 − 0.31

h
+ 44.33

h2 − 235.97
DBH

− 0.001DBH
h

− 1.86 · 10−5 h2

DBH
−

−8.8 · 10−7hDBH2 − 6.0 · 10−9hDBH3
] πhDBH

40000 . (9.2)

A comparison with the forest management plan indicated that the estimated vol-
umes fall into the range reported in the plan.

Figure 9.5 Graphical user interface of the COWRAS tool (with tree parameters and wind
risk assessment in the table).

9.5 Outlook

The potential of ALS data for forestry applications is wide, but its usage for
current forestry practice in the Czech Republic is still very limited. As demon-
strated in this chapter, several attempts to analyse ALS data in the context of
forestry application have been already made. These are mainly research activ-
ities that are limited to small areas and to answer specific research questions.
One of the limitations explaining why ALS data are not that widely used is that
data processing and subsequent analysis require special software, basic knowledge
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of processing techniques and GIS software. All this puts great demands on po-
tential users in public administration (environmental agencies, forest managers,
etc.). There are several user-friendly software packages supporting ALS data
analysis such as freeware Fusion (http://forsys.cfr.washington.edu/fusion/
fusionlatest.html) or commercial ENVI Lidar (http://www.exelisvis.com/
docs/using_envi_lidar_Home.html). There exist also freeware web-based geo-
processing tools for ALS data such as COWRAS (Clearcut Optimization and
Wind Risk Assessment; http://arcgis.mendelu.cz/topex/). Its user interface
is shown at Figure 9.5. The tool has been developed for optimization of clearcuts
(their location, shape, size, and orientation) with subsequent wind risk assessment.
It primarily works with ALS data previously processed to the form of DSM, DEM
and CHM. COWRAS identifies individual trees, and calculates their height, DBH
and volume (as described in 9.4). Information about each tree in a clearcut can
be exported and summarized in a table. By removing all trees from a user-defined
clearcut, evaluation of wind risk damage based on topographic exposure of un-
covered forest stand edges is predicted. The web-based implementation of such
a geoprocessing tool allows the use of sophisticated ALS processing methods and
GIS analysis by ordinary users.
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10
SURFACE TEMPERATURE

REGIME OF THE LANDSCAPE
Petra Hesslerová and Jan Pokorný

10.1 Introduction

Temperature is a state variable characterizing whether or not a body will be in
thermal contact with another body in thermal equilibrium (i.e. whether it will take
the heat, hand it over or a heat exchange will not be accomplished). If there is no
heat exchange between bodies, they have the same temperature. For the purpose
of this chapter it is necessary to distinguish between surface radiation (brightness)
temperature and air temperature measured in a standard way in meteorology (see
Chapter 3 and (Norman & Becker 1995). On a sunny day a radiation temperature
of bare surface can be as much as 20°C higher than the air temperature.

Dissipation, in the classical thermodynamics called energy loss, is irreversible
transformation to a different kind of energy, especially heat. Classical thermody-
namics describes principles in which thermal energy is converted into movement
at the price of irreversible losses – dissipation. Carnot described the efficiency
of a machine and distinguished “useful” exchange energy and “dissipated” energy
that is irreversibly lost (entropy). A Carnot engine, operating as a closed sys-
tem, is attempting to reach thermodynamic equilibrium – when temperatures are
equal, the machine stops. The machine can be set in motion by the delivery of

139



140 10. Surface Temperature Regime of the Landscape

additional external energy.
The Earth’s biosphere is receiving energy from the Sun; the outer layers of

the atmosphere receive during a year 1321–1412 W m−2. Living systems have
evolved as open systems and due to the input of solar energy, are far from ther-
modynamic equilibrium. They shape, improve. Unlike the Carnot machine, living
systems connect into more organized structures. Prigogine in the 60’s of the last
century created new non-linear (non-equilibrium) thermodynamics to describe the
self-organization of open systems far from thermodynamic equilibrium. He intro-
duced the concept of “dissipative structure” to emphasize the difference (paradox)
between a closed system (machine) and living system. In classical thermodynam-
ics, the dissipation of heat is always associated with energy waste and degradation
of the system. In open systems, especially in living systems, dissipation becomes
a source of order, a process of increasing organization. We may consider as a pi-
oneering work in this field a series of public lectures delivered by physicist Erwin
Schrödinger called “What is Life?” (see Schrödinger 1944).

Living systems, ecosystems (dissipative structures) compensate for tempera-
ture differences, generally “life abhors gradients” (Schneider & Sagan 2005). Tem-
perature differences that arise due to the uneven level of irradiation are a precon-
dition for the life development. The ability of ecosystems to balance temperatures
is shown e.g. by differences in temperature between day and night in the desert
and in the forests of the same geographical zone. The relatively low surface tem-
perature and temperature equalization between places and between day and night
(in space and time) are manifestations of the active role of ecosystems. (Ripl 1995)
proposed a conceptual Energy-Transport-Reaction (ETR) model, which includes
three basic processes of dissipation of solar energy (temperature equalization) that
are mediated by water:

• Evaporation and condensation

• Dissolution and precipitation of salts

• Decomposition of water into oxygen and hydrogen, and reversing formation
of water molecules (photosynthesis and respiration)

What processes influence the temperature of ecosystems?
Solar energy comes at a certain point of the Earth’s surface in daily pulses (night
and day), seasonal pulses and long term periodic variations from occur as a result
of changes in the shape of Earth’s orbit around the Sun and from changing of solar
activity. In the short term clouds play crucial role – on a clear day Earth’s surface
receives up to 1000 W m−2, on a cloudy day the amount of solar radiation decreases
to under 100 W m−2, i.e. a tenth. Solar radiation that comes to the surface
is partially reflected, and partially absorbed, some of that energy heating the
Earth’s surface and some of it being absorbed by organisms and used in biological
processes. From a heated surface air that flows up (sensible heat); part of the
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solar energy is used for evaporation of water (latent heat of evapotranspiration)
and a part goes into the ground (soil heat flux). A relatively small amount of
solar energy is bound by the process of photosynthesis into biomass. Table 10.1.
shows the ranges of values of the main processes of energy flows in ecosystems.
The intensity of these processes varies during the season and during the day by
the input of solar energy. Processes are interconnected and they tend to reduce
gradients, thus reducing the temperature differences. Evapotranspiration is the
most effective process of converting solar energy, reaching values of hundreds of
W m−2. The uptake of one molecule of carbon dioxide results in one molecule
of oxygen being excluded, along with a few hundred molecules of water as water
vapour.

The temperature in the landscape is the result of reflection of solar radiation,
radiation exchange between the sky and the other bodies and massive flows of
energy in the biosphere mediated by water. The distribution of temperature is
an indicator of the effectiveness of the use of solar energy.

Table 10.1 Energy transformations in ecosystems take the following values:

Reflection of shortwave radiation 5–25 % from the incident
radiation

Primary production (photosynthesis) Units of W m−2

Evapotranspiration Hundreds of W m−2

Decomposition of organic matter in the soil at
a negative balance of primary production Units to tens of W m−2

Heating of growth biomass Units to tens of W m−2

Solar radiation on the outer atmosphere during
the year 1321–1412 W m−2

Radiative forcing since the year 1750 1–3 W m−2 (0.2 W m−2) is
expected in next 10 years

10.2 Aims

This study, which is based on Hesslerová et al. (2013), demonstrates a combined
method of airship scanning of surface temperature (Ts) and ground measuring of
air temperature (Ta) in a varied agricultural landscape, to show the daily dynamics
of Ts and Ta at localities with different land cover. The aims of the study were:

1. to record and quantify the differences in spatial and temporal dynamics of
Ts during a hot summer day within a cultural landscape of high land cover
variability (forest – alder stand – wet meadow – harvested meadow – bare
field – asphalt – water),
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2. to compare daily dynamics of the surface temperature Ts of the studied
localities with air temperature Ta and demonstrate the differences between
these temperatures,

3. to discuss and point out how landscape planners and engineers may affect
local climate by dealing with water and vegetation.

10.3 Methods

10.3.1 Site Description

Seven localities with different land cover types were chosen, southeast of the village
of Domańın (about 5 km southeast of the town of Třeboň, Czech Republic):

• Locality 1 (HM) — harvested mesic meadow covered with drying out grass
of about 10 cm length. Dominant species were Alopecurus pratensis L. and
Arrhenatherum elatius (L.) J. Presl & C. Presl.

• Locality 2 (WM) — wet meadow with high underground water level, domi-
nant species: Phalaris arundinacea L. and Carex sp., cover height of approx.
1 m.

• Locality 3 (AS) – alder stand, floodplain community of Alnus glutinosa L.
and Prunus avium L., shrubs and smaller trees of up to 3 meters high.

• Locality 4 (F) – mixed forest represented mainly by pine trees (Pinus sylvest-
ris L.) and oaks (Quercus robur L.); estimated age 60 years, average cover
height 10–15 meters.

• Locality 5 (SV) – bare field (loamy-clay soil), less than 50 % of the area
covered by sparse grass vegetation.

• Locality 6 (W) – open surface water. Shallow pond with maximum depth
of 1.5 m and intensive fish farming.

• Locality 7 (A) – asphalt surface of a road.

10.3.2 Remote Sensing Measurement of Surface Temperature Ts

The measurements were carried out on July 9th 2010. The nine-meter long air-
ship (operated by AirshipClub.com) was equipped with an advanced navigation
and control systems that allowed it to fly in an automatic mode along a precisely
defined route navigated by GPS (for details see (Jirka et al. 2011)). It flew
about 250 m above the ground, the swath being about 200 m. In order to monitor
the surface temperature throughout the light part of a sunny day, the area was
scanned by both thermal and visible cameras simultaneously, sixteen times (at
04:50, 05:30, 06:00, 07:10, 08:10, 09:10, 10:40, 13:15, 14:00, 15:10, 16:10, 17:10,
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18:10, 18:40, 19:10, 20:10 GMT+1). The thermographic camera IR FPA Therma-
CAM TM PM695 (FLIR System Sweden) measures and images infrared radiation
emitted from an object in the spectral range from 7.5 µm to 13 µm with the spa-
tial resolution of 320 × 240 pixels (pixel size of 30 cm) and thermal sensitivity of
0.08°C at 30°C. The radiation detected by the camera is influenced by objects’
emissivity, reflected radiation from the surroundings and absorption and emission
of radiation from the atmosphere. The precise temperature measurement is sub-
ject to accurate compensation of different sources of radiation. The calibration
requires the following parameters: the object’s emissivity, reflected surrounding
temperature, distance between the object and camera, relative humidity and at-
mospheric temperature (see details in Section 3.3.2). The calibration parameters
were obtained from the screens situated within the area of interest; the emissivity
parameters as standard table values.

10.3.3 Meteorological Data

Air temperature (Ta) was measured at 2 meters above the soil surface at 10-
minutes intervals (Ta, °C, T + Rh probes, accuracy ±0.1°C) on five of the seven
studied localities. Individual Ta measurements at different localities exhibited sub-
tle differences (due to different land cover types) and therefore only one reference
Ta value for the whole study area was calculated as their average.

The locality “harvested meadow” was equipped also with CNR1 net radiome-
ter (Kipp & Zonen) for radiation balance analysis of solar and far infrared radi-
ation (in W m−2). Incident (Rsdown) and reflected global solar radiation (Rsup)
in shortwave region was measured by CM3 pyranometer (Kipp & Zonen, spectral
range from 0.31–2.8 µm), far infrared radiation (5–50 µm) was measured by two
CG3 pyrgeometers, one for measuring radiation coming from the sky (Rldown),
the other for measuring radiation coming from the soil surface (Rlup). All these
data were used to set-up and to calibrate the thermal camera.

10.3.4 Data Processing

To record the daily dynamics (i.e. from 4:50–20:10 GMT+1) of surface tempera-
ture from thermal images, we focused on the following variables:

• Mean daily surface temperature (Tsavrg) — mean surface temperature of
a locality measured in 16 scans from 04:50 to 20:10.

• Mean surface temperature of a locality in time t (Tst).
• Mean minimum surface temperature, mean maximum surface temperature

(Tsmin, Tsmax) – temperature extremes recorded during the time of mea-
surement (4:50–20:10 GMT+1).

• Surface temperature difference (Ds) – the difference between Tsmax and
Tsmin.
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• Surface temperature fluctuation (expressed by values of standard deviation)
– shows the variability of temperature at a locality at a certain time (surface
temperature heterogeneity of a locality SDst) or throughout the day (mean
daily variability SDsd).

The variables were calculated from the thermal images and converted into ASCII
data format. To reduce the huge data files while maintaining all characteristics
of the original data, we applied a random data selection. A random permutation
of the elements of ‘x’ (or ‘1:x’) was used. As a representative sample, 1000 values
(pixels) for every locality and time were chosen. Box plots were used in the figure
depicting the course of the surface temperature.

10.4 Results and Discussion

Surface temperature and its daily dynamics in the studied localities with differ-
ent types of land cover were found to be significantly distinctive during a hot
sunny day. The surface temperature values for individual localities are listed
in Table 10.2. The most distinct differences were found between the localities
with dry or sparse vegetation and those with fully functional vegetation and suf-
ficient water supply. Temperature characteristics of the ecosystems with no or
non-functional vegetation largely resembled the asphalt surface (Tsmax 47.6°C,
Ds 31.4°C), whereas those with dense vegetation were influenced by the pres-
ence and phase transition of water (water surface: Tsmax 29°C and Ds only 9°C
due to high heat capacity of water). The localities covered with dense bushy
or tree vegetation showed relatively well balanced daily temperature dynamics
(Figure 10.1) with low temperature extremes and slow temperature morning in-
crease or afternoon decrease. The impact of vegetation and water presence on the
ecosystem temperature dynamics was nicely demonstrated on the wet meadow
locality which showed much more balanced temperature compared to the nearby
harvested meadow covered with dry vegetation.

The importance of water for the ecosystem temperature balance is connected
not only with the physical characteristics of liquid water but also with high latent
heat of its liquid-gas transition. This process via evapotranspiration provides the
living systems with highly effective thermoregulative mechanism (2.5 MJ kg−1 at
20°C are spent during evaporation and released during condensation). The cooling
and warming effects of water liquid-gas transition can be multiplied within the
vegetation, especially within high forest stands, thanks to higher temperature
and structural variability (Makarieva et al. 2006; Hesslerová & Pokorný 2010a,b;
Kedziora 2010; Eiseltová et al. 2012; Hesslerová et al. 2013).

The Ta measured in the 5 meteorological screens within the studied area did
not differ much during the insolated part of the day (Table 10.2). During the mid-
day, the differences between the screens was around 1°C or even less; the maximum
difference was measured before sunset (19:10 and 20:10), when it reached 6°C (be-
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Table 10.2 Mean surface temperature (Ts) characteristics of the studied localities mea-
sured by thermal camera from 4:50 to 20:10 in sixteen scanning times. (Abbreviations:
Tsmin – temperature minimum, Tsmax – temperature maximum, Ds – temperature dif-
ference, Tsavrg – mean temperature, SDsd – surface temperature variability throughout
the day).

Localitya Tsmin Tsmax Ds Tsavrg SDsd

HM 9.3 44.2 34.8 28.0 10.98
WM 10.0 31.9 21.9 22.6 6.78
AS 10.1 28.9 18.8 21.7 5.95
F 12.0 29.0 17.0 22.8 5.77
SV 13.2 37.2 24.0 26.4 7.70
W 20.4 29.3 8.9 25.6 3.41
A 16.1 47.6 31.4 33.0 10.19
a HM – harvested meadow, WM – wet meadow, AS – alder stand, F – forest, SV –

sparse vegetation, W – water, A – asphalt

tween asphalt and wet meadow screens) and 4.6°C (asphalt and field). Whereas
Ta was relatively similar at different places in the studied area (Table 10.3), the
maximum difference of Ts between the different studied land covers reached al-
most 20°C in the early afternoon (Table 10.3 and Figure 10.2). The substantial
difference in Ts − Ta at localities with different land cover, both in values and
the characteristics of the daily courses imply that it is essential to consider the
relations between Ts and Ta site specifically.

In general, high irradiation causes surface temperature to be higher than air
temperature 2 m above the surface (Pal Arya 2001; Katsiabani et al. 2009; Gallo
et al. 2011). However Ts−Ta strongly varies according to the land cover type and
can reach even negative values. Also, the daily courses of these variables differ.
Whereas the surface temperature peaks around 12:30 simultaneously with the
maximum intensity of irradiance, the air temperature peaks later in the afternoon
between 16:00 and 17:00 (Table 10.3 and Figure 10.2). Large differences in Ts−Ta
of almost 15°C at the maximum of incoming irradiance (Table 10.3) were found at
the localities with sparse or dry vegetation. At the same time Ts of the localities
covered with dense vegetation well supplied with water (wet meadow, alder stand
and forest) was even slightly lower than Ta. Even though the comparison of Ts
and Ta could have been influenced by the different height of the compared stands
(air temperature was measured 2 m above the meadow whereas the forest was 10–
15 m tall), the temperature differences were large enough to express the influence
of functional vegetation on Ts increase. Moreover, taking into account the fact
that Ta commonly changes in adiabatic lapse rate of 0.6 to 1°C/100 m of elevation,
the differences of Ta above a meadow and an adjacent forest stand should not be
large.
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Figure 10.1 Daily courses of surface temperature (Ts) on seven studied localities. Each
point is calculated from 1000 randomly selected pixel values. Points describe the median
of the data, boxes are lower and upper quartiles and whiskers show 1.5 times of inter-
quartile range of the data or maximum and minimum values. Extreme values are not
shown in the graph.

The difference of Ts and Ta is usually mentioned in meteorological and clima-
tological textbooks; however, the consequences resulting from this difference do
not frequently appear in climate change discussions and recommendations and,
what is the most important, are not commonly considered in climate change mit-
igation strategies. The large differences between both temperatures and between
the sites with high temperature differences cause high temperature gradients –
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Figure 10.2 Diurnal changes of the difference between surface (Ts) and air (Ta) temper-
atures for seven land cover surfaces.

the consequence is higher turbulent heat flux, higher wind speeds and drainage of
the landscape. A landscape without water converts the majority of incoming solar
radiation into sensible heat, that it responsible for its heating. Our results show
that water and its presence in the landscape – not only in the form of water bod-
ies, but mainly its content in vegetation and soil, is able to balance temperature
differences, keep surface temperature lower and therefore not lose water through
a increase in evaporation over precipitation.

The relation between vegetation and Ts is common knowledge – everybody
knows that on a hot sunny day the air is cooler in a forest than on the concrete
surface. It is the surface temperature that living organisms are in contact with,
and which contributes to the microclimate within ecosystems that is crucial for
the functioning of biological systems. Our results show that under high irradiance
(maximum incoming solar energy was equal to 890 W m−2) the differences in Ts
are extreme even within a highly varied agricultural landscape.

Intensification of agriculture and urbanization significantly disrupts the flows
of energy. Due to landscape drainage, removal of functional and permanent vege-
tation (not only deforestation but also the loss of hedgerows, scattered vegetation,
wetlands, wet meadows and preferences of thermophilous crops), leads to over-
heating of the landscape and its degradation; this may result in rapid removals of
nutrients. The surface temperature of agriculture landscape during late ripening
and above all after crops harvesting, has the same values as the industrial and
mining landscape (Hesslerová & Pokorný 2010b). Therefore land managers (own-



10.4. Results and Discussion 149

ers, farmers, foresters, fishermen) should be considered as significant controllers
of the solar energy distribution, i.e. “local climate constructors” namely through
reasonable water and vegetation management.

Recommended Reading
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Reǰsková Procházková, A. 2013. Daily dy-
namics of radiation surface temperature of
different land cover types in a temperate cultural
landscape: Consequences for the local climate.
Ecological Engineering 145 – 154.

Heurich, M., Schneider, T. & Kennel, E. 2003. Laser
scanning for identification of forest structures in
the bavarian forest national park. Proceedings of
the ScandLaser scientific worskhop on airborne
laser scanning of forests., 98–107, Swedish Uni-
versity of Agricultural Sciences, Umea, Sweeden.

Hirschmugl, M., Ofner, M., Raggam, J. & Schardt,
M. 2007. Single tree detection in very high res-
olution remote sensing data. Remote Sensing of
Environment 110: 533–544.



References 155

Hilker, T., Coops, N.C., Wulder, M.A., Black, T.A.
& Guy, R.D. 2008. The use of remote sensing in
light use efficiency based models of gross primary
production: A review of current status and future
requirements. Science of the Total Environment
404: 411–423.
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2014. Outlook for the next generation’s precision
forestry in finland. Forests 5: 1682–1694.

Homolová, L., Malenovský, Z., Clevers, J., Garćıa-
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Hyyppä, H. & Hyyppä, J. 1999. Comparing the ac-
curacy of laser scanner with other optical remote
sensing data sources for stand attribute retrieval.
The Photogrammetric Journal of Finland 16: 5–
15.
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Malenovský, Z., Homolová, L., Zurita-Milla, R.,
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Lesńıcky časopis 37: 49–56.

Petrie, G. 2011. Airborne topographic laser scanners.
GEO Informatics 14: 34–44.

Pierce, F.J. & Nowak, P. 1999. Aspects of precision
agriculture. Advances in Agronomy 67: 1–85.

Pitkänen, J. 2001. Individual tree detection in digital
aerial images by combining locally adaptive bi-
narization and local maxima methods. Canadian
Journal of forest research 31: 832–844.



158 References

Planck, M. 1900. Zur theorie des gesetzes der energiev-
erteilung im normalspektrum. verhandlungen der
deutschen physikalischen gesellschaft 2: 237. ter
Haar, D. 1967. On the Theory of the Energy
Distribution Law of the Normal Spectrum. The
Old Quantum Theory, Pergamon Press, p. 82,
LCNN 66029628.

Pokorný, J., Brom, J., Čermák, J., Hesslerová, P.,
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How water and vegetation control solar energy
fluxes and landscape heat. International Journal
of Water 5: 311 – 336.

Pouliot, D.A., King, D.J. & Pitt, D.G. 2005. Develop-
ment and evaluation of an automated tree detec-
tion delineation algorithm for monitoring regen-
erating coniferous forests. Canadian Journal of
Forest Research 35: 2332–2345.

Qu, Z., Kindel, B. & Goetz, A.F.H. 2003. The high
accuracy atmospheric correction for hyperspec-
tral data (HATCH) model. IEEE Transactions
on Geoscience and Remote Sensing 41: 1223–
1231.

Quattrochi, D.A. & Luvall, J.C. 2004. Thermal Re-
mote Sensing in Land Surface Processing. CRC
Press.

Randolph, K., Wilson, J., Tedesco, L., Li, L., Pascual,
D.L. & Soyeux, E. 2008. Hyperspectral remote
sensing of cyanobacteria in turbid productive wa-
ter using optically active pigments, chlorophyll a
and phycocyanin. Remote Sensing of Environ-
ment 112: 4009–4019.

Rao, P.V.L., Gupta, N., Bhaskar, A.S.B. & Ja-
yaraj, R. 2002. Toxins and bioactive compounds
from cyanobacteria and their implications on hu-
man health. Journal of environmental biology /
Academy of Environmental Biology, India 23:
215–224.

Richter, R. 2012. Atmospheric / topographic correc-
tion for airborne imagery (ATCOR-4 user guide,
version 6.2 BETA). Tech. rep., DLR - German
Aerospace Center, Wessling (Germany).

Richter, R. & Schläpfer, D. 2002. Geo-atmospheric
processing of airborne imaging spectrometry
data. Part 2: Atmospheric/topographic correc-
tion. International Journal of Remote Sensing
23: 2631–2649.

Ripl, W. 1995. Management of water cycle and energy
flow for ecosystem control: the energy-transport-
reaction (ETR) model. Ecological Modelling 78:
61 – 76.

Rivera, J.P., Verrelst, J., Leonenko, G. & Moreno, J.
2013. Multiple cost functions and regularization
options for improved retrieval of leaf chlorophyll
content and LAI through inversion of the PRO-
SAIL model. Remote Sensing 5: 3280–3304.

Rodriguez-Moreno, F., Lukas, V., Neudert, L. &
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